Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/dma/direct.c
29509 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2018-2020 Christoph Hellwig.
4
*
5
* DMA operations that map physical memory directly without using an IOMMU.
6
*/
7
#include <linux/memblock.h> /* for max_pfn */
8
#include <linux/export.h>
9
#include <linux/mm.h>
10
#include <linux/dma-map-ops.h>
11
#include <linux/scatterlist.h>
12
#include <linux/pfn.h>
13
#include <linux/vmalloc.h>
14
#include <linux/set_memory.h>
15
#include <linux/slab.h>
16
#include <linux/pci-p2pdma.h>
17
#include "direct.h"
18
19
/*
20
* Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
21
* it for entirely different regions. In that case the arch code needs to
22
* override the variable below for dma-direct to work properly.
23
*/
24
u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24);
25
26
static inline dma_addr_t phys_to_dma_direct(struct device *dev,
27
phys_addr_t phys)
28
{
29
if (force_dma_unencrypted(dev))
30
return phys_to_dma_unencrypted(dev, phys);
31
return phys_to_dma(dev, phys);
32
}
33
34
static inline struct page *dma_direct_to_page(struct device *dev,
35
dma_addr_t dma_addr)
36
{
37
return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
38
}
39
40
u64 dma_direct_get_required_mask(struct device *dev)
41
{
42
phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
43
u64 max_dma = phys_to_dma_direct(dev, phys);
44
45
return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
46
}
47
48
static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
49
{
50
u64 dma_limit = min_not_zero(
51
dev->coherent_dma_mask,
52
dev->bus_dma_limit);
53
54
/*
55
* Optimistically try the zone that the physical address mask falls
56
* into first. If that returns memory that isn't actually addressable
57
* we will fallback to the next lower zone and try again.
58
*
59
* Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
60
* zones.
61
*/
62
*phys_limit = dma_to_phys(dev, dma_limit);
63
if (*phys_limit <= zone_dma_limit)
64
return GFP_DMA;
65
if (*phys_limit <= DMA_BIT_MASK(32))
66
return GFP_DMA32;
67
return 0;
68
}
69
70
bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
71
{
72
dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
73
74
if (dma_addr == DMA_MAPPING_ERROR)
75
return false;
76
return dma_addr + size - 1 <=
77
min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
78
}
79
80
static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
81
{
82
if (!force_dma_unencrypted(dev))
83
return 0;
84
return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
85
}
86
87
static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
88
{
89
int ret;
90
91
if (!force_dma_unencrypted(dev))
92
return 0;
93
ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
94
if (ret)
95
pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
96
return ret;
97
}
98
99
static void __dma_direct_free_pages(struct device *dev, struct page *page,
100
size_t size)
101
{
102
if (swiotlb_free(dev, page, size))
103
return;
104
dma_free_contiguous(dev, page, size);
105
}
106
107
static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
108
{
109
struct page *page = swiotlb_alloc(dev, size);
110
111
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
112
swiotlb_free(dev, page, size);
113
return NULL;
114
}
115
116
return page;
117
}
118
119
static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
120
gfp_t gfp, bool allow_highmem)
121
{
122
int node = dev_to_node(dev);
123
struct page *page;
124
u64 phys_limit;
125
126
WARN_ON_ONCE(!PAGE_ALIGNED(size));
127
128
if (is_swiotlb_for_alloc(dev))
129
return dma_direct_alloc_swiotlb(dev, size);
130
131
gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
132
page = dma_alloc_contiguous(dev, size, gfp);
133
if (page) {
134
if (dma_coherent_ok(dev, page_to_phys(page), size) &&
135
(allow_highmem || !PageHighMem(page)))
136
return page;
137
138
dma_free_contiguous(dev, page, size);
139
}
140
141
while ((page = alloc_pages_node(node, gfp, get_order(size)))
142
&& !dma_coherent_ok(dev, page_to_phys(page), size)) {
143
__free_pages(page, get_order(size));
144
145
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
146
phys_limit < DMA_BIT_MASK(64) &&
147
!(gfp & (GFP_DMA32 | GFP_DMA)))
148
gfp |= GFP_DMA32;
149
else if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA))
150
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
151
else
152
return NULL;
153
}
154
155
return page;
156
}
157
158
/*
159
* Check if a potentially blocking operations needs to dip into the atomic
160
* pools for the given device/gfp.
161
*/
162
static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
163
{
164
return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
165
}
166
167
static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
168
dma_addr_t *dma_handle, gfp_t gfp)
169
{
170
struct page *page;
171
u64 phys_limit;
172
void *ret;
173
174
if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
175
return NULL;
176
177
gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
178
page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
179
if (!page)
180
return NULL;
181
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
182
return ret;
183
}
184
185
static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
186
dma_addr_t *dma_handle, gfp_t gfp)
187
{
188
struct page *page;
189
190
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
191
if (!page)
192
return NULL;
193
194
/* remove any dirty cache lines on the kernel alias */
195
if (!PageHighMem(page))
196
arch_dma_prep_coherent(page, size);
197
198
/* return the page pointer as the opaque cookie */
199
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
200
return page;
201
}
202
203
void *dma_direct_alloc(struct device *dev, size_t size,
204
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
205
{
206
bool remap = false, set_uncached = false;
207
struct page *page;
208
void *ret;
209
210
size = PAGE_ALIGN(size);
211
if (attrs & DMA_ATTR_NO_WARN)
212
gfp |= __GFP_NOWARN;
213
214
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
215
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
216
return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
217
218
if (!dev_is_dma_coherent(dev)) {
219
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
220
!is_swiotlb_for_alloc(dev))
221
return arch_dma_alloc(dev, size, dma_handle, gfp,
222
attrs);
223
224
/*
225
* If there is a global pool, always allocate from it for
226
* non-coherent devices.
227
*/
228
if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
229
return dma_alloc_from_global_coherent(dev, size,
230
dma_handle);
231
232
/*
233
* Otherwise we require the architecture to either be able to
234
* mark arbitrary parts of the kernel direct mapping uncached,
235
* or remapped it uncached.
236
*/
237
set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
238
remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
239
if (!set_uncached && !remap) {
240
pr_warn_once("coherent DMA allocations not supported on this platform.\n");
241
return NULL;
242
}
243
}
244
245
/*
246
* Remapping or decrypting memory may block, allocate the memory from
247
* the atomic pools instead if we aren't allowed block.
248
*/
249
if ((remap || force_dma_unencrypted(dev)) &&
250
dma_direct_use_pool(dev, gfp))
251
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
252
253
/* we always manually zero the memory once we are done */
254
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
255
if (!page)
256
return NULL;
257
258
/*
259
* dma_alloc_contiguous can return highmem pages depending on a
260
* combination the cma= arguments and per-arch setup. These need to be
261
* remapped to return a kernel virtual address.
262
*/
263
if (PageHighMem(page)) {
264
remap = true;
265
set_uncached = false;
266
}
267
268
if (remap) {
269
pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
270
271
if (force_dma_unencrypted(dev))
272
prot = pgprot_decrypted(prot);
273
274
/* remove any dirty cache lines on the kernel alias */
275
arch_dma_prep_coherent(page, size);
276
277
/* create a coherent mapping */
278
ret = dma_common_contiguous_remap(page, size, prot,
279
__builtin_return_address(0));
280
if (!ret)
281
goto out_free_pages;
282
} else {
283
ret = page_address(page);
284
if (dma_set_decrypted(dev, ret, size))
285
goto out_leak_pages;
286
}
287
288
memset(ret, 0, size);
289
290
if (set_uncached) {
291
arch_dma_prep_coherent(page, size);
292
ret = arch_dma_set_uncached(ret, size);
293
if (IS_ERR(ret))
294
goto out_encrypt_pages;
295
}
296
297
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
298
return ret;
299
300
out_encrypt_pages:
301
if (dma_set_encrypted(dev, page_address(page), size))
302
return NULL;
303
out_free_pages:
304
__dma_direct_free_pages(dev, page, size);
305
return NULL;
306
out_leak_pages:
307
return NULL;
308
}
309
310
void dma_direct_free(struct device *dev, size_t size,
311
void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
312
{
313
unsigned int page_order = get_order(size);
314
315
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
316
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
317
/* cpu_addr is a struct page cookie, not a kernel address */
318
dma_free_contiguous(dev, cpu_addr, size);
319
return;
320
}
321
322
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
323
!dev_is_dma_coherent(dev) &&
324
!is_swiotlb_for_alloc(dev)) {
325
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
326
return;
327
}
328
329
if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
330
!dev_is_dma_coherent(dev)) {
331
if (!dma_release_from_global_coherent(page_order, cpu_addr))
332
WARN_ON_ONCE(1);
333
return;
334
}
335
336
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
337
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
338
dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
339
return;
340
341
if (is_vmalloc_addr(cpu_addr)) {
342
vunmap(cpu_addr);
343
} else {
344
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
345
arch_dma_clear_uncached(cpu_addr, size);
346
if (dma_set_encrypted(dev, cpu_addr, size))
347
return;
348
}
349
350
__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
351
}
352
353
struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
354
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
355
{
356
struct page *page;
357
void *ret;
358
359
if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
360
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
361
362
page = __dma_direct_alloc_pages(dev, size, gfp, false);
363
if (!page)
364
return NULL;
365
366
ret = page_address(page);
367
if (dma_set_decrypted(dev, ret, size))
368
goto out_leak_pages;
369
memset(ret, 0, size);
370
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
371
return page;
372
out_leak_pages:
373
return NULL;
374
}
375
376
void dma_direct_free_pages(struct device *dev, size_t size,
377
struct page *page, dma_addr_t dma_addr,
378
enum dma_data_direction dir)
379
{
380
void *vaddr = page_address(page);
381
382
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
383
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
384
dma_free_from_pool(dev, vaddr, size))
385
return;
386
387
if (dma_set_encrypted(dev, vaddr, size))
388
return;
389
__dma_direct_free_pages(dev, page, size);
390
}
391
392
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
393
defined(CONFIG_SWIOTLB)
394
void dma_direct_sync_sg_for_device(struct device *dev,
395
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
396
{
397
struct scatterlist *sg;
398
int i;
399
400
for_each_sg(sgl, sg, nents, i) {
401
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
402
403
swiotlb_sync_single_for_device(dev, paddr, sg->length, dir);
404
405
if (!dev_is_dma_coherent(dev))
406
arch_sync_dma_for_device(paddr, sg->length,
407
dir);
408
}
409
}
410
#endif
411
412
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
413
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
414
defined(CONFIG_SWIOTLB)
415
void dma_direct_sync_sg_for_cpu(struct device *dev,
416
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
417
{
418
struct scatterlist *sg;
419
int i;
420
421
for_each_sg(sgl, sg, nents, i) {
422
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
423
424
if (!dev_is_dma_coherent(dev))
425
arch_sync_dma_for_cpu(paddr, sg->length, dir);
426
427
swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir);
428
429
if (dir == DMA_FROM_DEVICE)
430
arch_dma_mark_clean(paddr, sg->length);
431
}
432
433
if (!dev_is_dma_coherent(dev))
434
arch_sync_dma_for_cpu_all();
435
}
436
437
/*
438
* Unmaps segments, except for ones marked as pci_p2pdma which do not
439
* require any further action as they contain a bus address.
440
*/
441
void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
442
int nents, enum dma_data_direction dir, unsigned long attrs)
443
{
444
struct scatterlist *sg;
445
int i;
446
447
for_each_sg(sgl, sg, nents, i) {
448
if (sg_dma_is_bus_address(sg))
449
sg_dma_unmark_bus_address(sg);
450
else
451
dma_direct_unmap_phys(dev, sg->dma_address,
452
sg_dma_len(sg), dir, attrs);
453
}
454
}
455
#endif
456
457
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
458
enum dma_data_direction dir, unsigned long attrs)
459
{
460
struct pci_p2pdma_map_state p2pdma_state = {};
461
struct scatterlist *sg;
462
int i, ret;
463
464
for_each_sg(sgl, sg, nents, i) {
465
switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(sg))) {
466
case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
467
/*
468
* Any P2P mapping that traverses the PCI host bridge
469
* must be mapped with CPU physical address and not PCI
470
* bus addresses.
471
*/
472
break;
473
case PCI_P2PDMA_MAP_NONE:
474
sg->dma_address = dma_direct_map_phys(dev, sg_phys(sg),
475
sg->length, dir, attrs);
476
if (sg->dma_address == DMA_MAPPING_ERROR) {
477
ret = -EIO;
478
goto out_unmap;
479
}
480
break;
481
case PCI_P2PDMA_MAP_BUS_ADDR:
482
sg->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state,
483
sg_phys(sg));
484
sg_dma_mark_bus_address(sg);
485
continue;
486
default:
487
ret = -EREMOTEIO;
488
goto out_unmap;
489
}
490
sg_dma_len(sg) = sg->length;
491
}
492
493
return nents;
494
495
out_unmap:
496
dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
497
return ret;
498
}
499
500
int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
501
void *cpu_addr, dma_addr_t dma_addr, size_t size,
502
unsigned long attrs)
503
{
504
struct page *page = dma_direct_to_page(dev, dma_addr);
505
int ret;
506
507
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
508
if (!ret)
509
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
510
return ret;
511
}
512
513
bool dma_direct_can_mmap(struct device *dev)
514
{
515
return dev_is_dma_coherent(dev) ||
516
IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
517
}
518
519
int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
520
void *cpu_addr, dma_addr_t dma_addr, size_t size,
521
unsigned long attrs)
522
{
523
unsigned long user_count = vma_pages(vma);
524
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
525
unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
526
int ret = -ENXIO;
527
528
vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
529
if (force_dma_unencrypted(dev))
530
vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
531
532
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
533
return ret;
534
if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
535
return ret;
536
537
if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
538
return -ENXIO;
539
return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
540
user_count << PAGE_SHIFT, vma->vm_page_prot);
541
}
542
543
int dma_direct_supported(struct device *dev, u64 mask)
544
{
545
u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
546
547
/*
548
* Because 32-bit DMA masks are so common we expect every architecture
549
* to be able to satisfy them - either by not supporting more physical
550
* memory, or by providing a ZONE_DMA32. If neither is the case, the
551
* architecture needs to use an IOMMU instead of the direct mapping.
552
*/
553
if (mask >= DMA_BIT_MASK(32))
554
return 1;
555
556
/*
557
* This check needs to be against the actual bit mask value, so use
558
* phys_to_dma_unencrypted() here so that the SME encryption mask isn't
559
* part of the check.
560
*/
561
if (IS_ENABLED(CONFIG_ZONE_DMA))
562
min_mask = min_t(u64, min_mask, zone_dma_limit);
563
return mask >= phys_to_dma_unencrypted(dev, min_mask);
564
}
565
566
static const struct bus_dma_region *dma_find_range(struct device *dev,
567
unsigned long start_pfn)
568
{
569
const struct bus_dma_region *m;
570
571
for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
572
unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
573
574
if (start_pfn >= cpu_start_pfn &&
575
start_pfn - cpu_start_pfn < PFN_DOWN(m->size))
576
return m;
577
}
578
579
return NULL;
580
}
581
582
/*
583
* To check whether all ram resource ranges are covered by dma range map
584
* Returns 0 when further check is needed
585
* Returns 1 if there is some RAM range can't be covered by dma_range_map
586
*/
587
static int check_ram_in_range_map(unsigned long start_pfn,
588
unsigned long nr_pages, void *data)
589
{
590
unsigned long end_pfn = start_pfn + nr_pages;
591
struct device *dev = data;
592
593
while (start_pfn < end_pfn) {
594
const struct bus_dma_region *bdr;
595
596
bdr = dma_find_range(dev, start_pfn);
597
if (!bdr)
598
return 1;
599
600
start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
601
}
602
603
return 0;
604
}
605
606
bool dma_direct_all_ram_mapped(struct device *dev)
607
{
608
if (!dev->dma_range_map)
609
return true;
610
return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
611
check_ram_in_range_map);
612
}
613
614
size_t dma_direct_max_mapping_size(struct device *dev)
615
{
616
/* If SWIOTLB is active, use its maximum mapping size */
617
if (is_swiotlb_active(dev) &&
618
(dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
619
return swiotlb_max_mapping_size(dev);
620
return SIZE_MAX;
621
}
622
623
bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
624
{
625
return !dev_is_dma_coherent(dev) ||
626
swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr));
627
}
628
629
/**
630
* dma_direct_set_offset - Assign scalar offset for a single DMA range.
631
* @dev: device pointer; needed to "own" the alloced memory.
632
* @cpu_start: beginning of memory region covered by this offset.
633
* @dma_start: beginning of DMA/PCI region covered by this offset.
634
* @size: size of the region.
635
*
636
* This is for the simple case of a uniform offset which cannot
637
* be discovered by "dma-ranges".
638
*
639
* It returns -ENOMEM if out of memory, -EINVAL if a map
640
* already exists, 0 otherwise.
641
*
642
* Note: any call to this from a driver is a bug. The mapping needs
643
* to be described by the device tree or other firmware interfaces.
644
*/
645
int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
646
dma_addr_t dma_start, u64 size)
647
{
648
struct bus_dma_region *map;
649
u64 offset = (u64)cpu_start - (u64)dma_start;
650
651
if (dev->dma_range_map) {
652
dev_err(dev, "attempt to add DMA range to existing map\n");
653
return -EINVAL;
654
}
655
656
if (!offset)
657
return 0;
658
659
map = kcalloc(2, sizeof(*map), GFP_KERNEL);
660
if (!map)
661
return -ENOMEM;
662
map[0].cpu_start = cpu_start;
663
map[0].dma_start = dma_start;
664
map[0].size = size;
665
dev->dma_range_map = map;
666
return 0;
667
}
668
669