Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/dma/mapping.c
29509 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* arch-independent dma-mapping routines
4
*
5
* Copyright (c) 2006 SUSE Linux Products GmbH
6
* Copyright (c) 2006 Tejun Heo <[email protected]>
7
*/
8
#include <linux/memblock.h> /* for max_pfn */
9
#include <linux/acpi.h>
10
#include <linux/dma-map-ops.h>
11
#include <linux/export.h>
12
#include <linux/gfp.h>
13
#include <linux/iommu-dma.h>
14
#include <linux/kmsan.h>
15
#include <linux/of_device.h>
16
#include <linux/slab.h>
17
#include <linux/vmalloc.h>
18
#include "debug.h"
19
#include "direct.h"
20
21
#define CREATE_TRACE_POINTS
22
#include <trace/events/dma.h>
23
24
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
25
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
26
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
27
bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
28
#endif
29
30
/*
31
* Managed DMA API
32
*/
33
struct dma_devres {
34
size_t size;
35
void *vaddr;
36
dma_addr_t dma_handle;
37
unsigned long attrs;
38
};
39
40
static void dmam_release(struct device *dev, void *res)
41
{
42
struct dma_devres *this = res;
43
44
dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
45
this->attrs);
46
}
47
48
static int dmam_match(struct device *dev, void *res, void *match_data)
49
{
50
struct dma_devres *this = res, *match = match_data;
51
52
if (this->vaddr == match->vaddr) {
53
WARN_ON(this->size != match->size ||
54
this->dma_handle != match->dma_handle);
55
return 1;
56
}
57
return 0;
58
}
59
60
/**
61
* dmam_free_coherent - Managed dma_free_coherent()
62
* @dev: Device to free coherent memory for
63
* @size: Size of allocation
64
* @vaddr: Virtual address of the memory to free
65
* @dma_handle: DMA handle of the memory to free
66
*
67
* Managed dma_free_coherent().
68
*/
69
void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
70
dma_addr_t dma_handle)
71
{
72
struct dma_devres match_data = { size, vaddr, dma_handle };
73
74
WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
75
dma_free_coherent(dev, size, vaddr, dma_handle);
76
}
77
EXPORT_SYMBOL(dmam_free_coherent);
78
79
/**
80
* dmam_alloc_attrs - Managed dma_alloc_attrs()
81
* @dev: Device to allocate non_coherent memory for
82
* @size: Size of allocation
83
* @dma_handle: Out argument for allocated DMA handle
84
* @gfp: Allocation flags
85
* @attrs: Flags in the DMA_ATTR_* namespace.
86
*
87
* Managed dma_alloc_attrs(). Memory allocated using this function will be
88
* automatically released on driver detach.
89
*
90
* RETURNS:
91
* Pointer to allocated memory on success, NULL on failure.
92
*/
93
void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
94
gfp_t gfp, unsigned long attrs)
95
{
96
struct dma_devres *dr;
97
void *vaddr;
98
99
dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
100
if (!dr)
101
return NULL;
102
103
vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
104
if (!vaddr) {
105
devres_free(dr);
106
return NULL;
107
}
108
109
dr->vaddr = vaddr;
110
dr->dma_handle = *dma_handle;
111
dr->size = size;
112
dr->attrs = attrs;
113
114
devres_add(dev, dr);
115
116
return vaddr;
117
}
118
EXPORT_SYMBOL(dmam_alloc_attrs);
119
120
static bool dma_go_direct(struct device *dev, dma_addr_t mask,
121
const struct dma_map_ops *ops)
122
{
123
if (use_dma_iommu(dev))
124
return false;
125
126
if (likely(!ops))
127
return true;
128
129
#ifdef CONFIG_DMA_OPS_BYPASS
130
if (dev->dma_ops_bypass)
131
return min_not_zero(mask, dev->bus_dma_limit) >=
132
dma_direct_get_required_mask(dev);
133
#endif
134
return false;
135
}
136
137
138
/*
139
* Check if the devices uses a direct mapping for streaming DMA operations.
140
* This allows IOMMU drivers to set a bypass mode if the DMA mask is large
141
* enough.
142
*/
143
static inline bool dma_alloc_direct(struct device *dev,
144
const struct dma_map_ops *ops)
145
{
146
return dma_go_direct(dev, dev->coherent_dma_mask, ops);
147
}
148
149
static inline bool dma_map_direct(struct device *dev,
150
const struct dma_map_ops *ops)
151
{
152
return dma_go_direct(dev, *dev->dma_mask, ops);
153
}
154
155
dma_addr_t dma_map_phys(struct device *dev, phys_addr_t phys, size_t size,
156
enum dma_data_direction dir, unsigned long attrs)
157
{
158
const struct dma_map_ops *ops = get_dma_ops(dev);
159
bool is_mmio = attrs & DMA_ATTR_MMIO;
160
dma_addr_t addr;
161
162
BUG_ON(!valid_dma_direction(dir));
163
164
if (WARN_ON_ONCE(!dev->dma_mask))
165
return DMA_MAPPING_ERROR;
166
167
if (dma_map_direct(dev, ops) ||
168
(!is_mmio && arch_dma_map_phys_direct(dev, phys + size)))
169
addr = dma_direct_map_phys(dev, phys, size, dir, attrs);
170
else if (use_dma_iommu(dev))
171
addr = iommu_dma_map_phys(dev, phys, size, dir, attrs);
172
else if (is_mmio) {
173
if (!ops->map_resource)
174
return DMA_MAPPING_ERROR;
175
176
addr = ops->map_resource(dev, phys, size, dir, attrs);
177
} else {
178
struct page *page = phys_to_page(phys);
179
size_t offset = offset_in_page(phys);
180
181
/*
182
* The dma_ops API contract for ops->map_page() requires
183
* kmappable memory, while ops->map_resource() does not.
184
*/
185
addr = ops->map_page(dev, page, offset, size, dir, attrs);
186
}
187
188
if (!is_mmio)
189
kmsan_handle_dma(phys, size, dir);
190
trace_dma_map_phys(dev, phys, addr, size, dir, attrs);
191
debug_dma_map_phys(dev, phys, size, dir, addr, attrs);
192
193
return addr;
194
}
195
EXPORT_SYMBOL_GPL(dma_map_phys);
196
197
dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
198
size_t offset, size_t size, enum dma_data_direction dir,
199
unsigned long attrs)
200
{
201
phys_addr_t phys = page_to_phys(page) + offset;
202
203
if (unlikely(attrs & DMA_ATTR_MMIO))
204
return DMA_MAPPING_ERROR;
205
206
if (IS_ENABLED(CONFIG_DMA_API_DEBUG) &&
207
WARN_ON_ONCE(is_zone_device_page(page)))
208
return DMA_MAPPING_ERROR;
209
210
return dma_map_phys(dev, phys, size, dir, attrs);
211
}
212
EXPORT_SYMBOL(dma_map_page_attrs);
213
214
void dma_unmap_phys(struct device *dev, dma_addr_t addr, size_t size,
215
enum dma_data_direction dir, unsigned long attrs)
216
{
217
const struct dma_map_ops *ops = get_dma_ops(dev);
218
bool is_mmio = attrs & DMA_ATTR_MMIO;
219
220
BUG_ON(!valid_dma_direction(dir));
221
if (dma_map_direct(dev, ops) ||
222
(!is_mmio && arch_dma_unmap_phys_direct(dev, addr + size)))
223
dma_direct_unmap_phys(dev, addr, size, dir, attrs);
224
else if (use_dma_iommu(dev))
225
iommu_dma_unmap_phys(dev, addr, size, dir, attrs);
226
else if (is_mmio) {
227
if (ops->unmap_resource)
228
ops->unmap_resource(dev, addr, size, dir, attrs);
229
} else
230
ops->unmap_page(dev, addr, size, dir, attrs);
231
trace_dma_unmap_phys(dev, addr, size, dir, attrs);
232
debug_dma_unmap_phys(dev, addr, size, dir);
233
}
234
EXPORT_SYMBOL_GPL(dma_unmap_phys);
235
236
void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
237
enum dma_data_direction dir, unsigned long attrs)
238
{
239
if (unlikely(attrs & DMA_ATTR_MMIO))
240
return;
241
242
dma_unmap_phys(dev, addr, size, dir, attrs);
243
}
244
EXPORT_SYMBOL(dma_unmap_page_attrs);
245
246
static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
247
int nents, enum dma_data_direction dir, unsigned long attrs)
248
{
249
const struct dma_map_ops *ops = get_dma_ops(dev);
250
int ents;
251
252
BUG_ON(!valid_dma_direction(dir));
253
254
if (WARN_ON_ONCE(!dev->dma_mask))
255
return 0;
256
257
if (dma_map_direct(dev, ops) ||
258
arch_dma_map_sg_direct(dev, sg, nents))
259
ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
260
else if (use_dma_iommu(dev))
261
ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
262
else
263
ents = ops->map_sg(dev, sg, nents, dir, attrs);
264
265
if (ents > 0) {
266
kmsan_handle_dma_sg(sg, nents, dir);
267
trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
268
debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
269
} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
270
ents != -EIO && ents != -EREMOTEIO)) {
271
trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs);
272
return -EIO;
273
}
274
275
return ents;
276
}
277
278
/**
279
* dma_map_sg_attrs - Map the given buffer for DMA
280
* @dev: The device for which to perform the DMA operation
281
* @sg: The sg_table object describing the buffer
282
* @nents: Number of entries to map
283
* @dir: DMA direction
284
* @attrs: Optional DMA attributes for the map operation
285
*
286
* Maps a buffer described by a scatterlist passed in the sg argument with
287
* nents segments for the @dir DMA operation by the @dev device.
288
*
289
* Returns the number of mapped entries (which can be less than nents)
290
* on success. Zero is returned for any error.
291
*
292
* dma_unmap_sg_attrs() should be used to unmap the buffer with the
293
* original sg and original nents (not the value returned by this funciton).
294
*/
295
unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
296
int nents, enum dma_data_direction dir, unsigned long attrs)
297
{
298
int ret;
299
300
ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
301
if (ret < 0)
302
return 0;
303
return ret;
304
}
305
EXPORT_SYMBOL(dma_map_sg_attrs);
306
307
/**
308
* dma_map_sgtable - Map the given buffer for DMA
309
* @dev: The device for which to perform the DMA operation
310
* @sgt: The sg_table object describing the buffer
311
* @dir: DMA direction
312
* @attrs: Optional DMA attributes for the map operation
313
*
314
* Maps a buffer described by a scatterlist stored in the given sg_table
315
* object for the @dir DMA operation by the @dev device. After success, the
316
* ownership for the buffer is transferred to the DMA domain. One has to
317
* call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
318
* ownership of the buffer back to the CPU domain before touching the
319
* buffer by the CPU.
320
*
321
* Returns 0 on success or a negative error code on error. The following
322
* error codes are supported with the given meaning:
323
*
324
* -EINVAL An invalid argument, unaligned access or other error
325
* in usage. Will not succeed if retried.
326
* -ENOMEM Insufficient resources (like memory or IOVA space) to
327
* complete the mapping. Should succeed if retried later.
328
* -EIO Legacy error code with an unknown meaning. eg. this is
329
* returned if a lower level call returned
330
* DMA_MAPPING_ERROR.
331
* -EREMOTEIO The DMA device cannot access P2PDMA memory specified
332
* in the sg_table. This will not succeed if retried.
333
*/
334
int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
335
enum dma_data_direction dir, unsigned long attrs)
336
{
337
int nents;
338
339
nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
340
if (nents < 0)
341
return nents;
342
sgt->nents = nents;
343
return 0;
344
}
345
EXPORT_SYMBOL_GPL(dma_map_sgtable);
346
347
void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
348
int nents, enum dma_data_direction dir,
349
unsigned long attrs)
350
{
351
const struct dma_map_ops *ops = get_dma_ops(dev);
352
353
BUG_ON(!valid_dma_direction(dir));
354
trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
355
debug_dma_unmap_sg(dev, sg, nents, dir);
356
if (dma_map_direct(dev, ops) ||
357
arch_dma_unmap_sg_direct(dev, sg, nents))
358
dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
359
else if (use_dma_iommu(dev))
360
iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
361
else if (ops->unmap_sg)
362
ops->unmap_sg(dev, sg, nents, dir, attrs);
363
}
364
EXPORT_SYMBOL(dma_unmap_sg_attrs);
365
366
dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
367
size_t size, enum dma_data_direction dir, unsigned long attrs)
368
{
369
if (IS_ENABLED(CONFIG_DMA_API_DEBUG) &&
370
WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
371
return DMA_MAPPING_ERROR;
372
373
return dma_map_phys(dev, phys_addr, size, dir, attrs | DMA_ATTR_MMIO);
374
}
375
EXPORT_SYMBOL(dma_map_resource);
376
377
void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
378
enum dma_data_direction dir, unsigned long attrs)
379
{
380
dma_unmap_phys(dev, addr, size, dir, attrs | DMA_ATTR_MMIO);
381
}
382
EXPORT_SYMBOL(dma_unmap_resource);
383
384
#ifdef CONFIG_DMA_NEED_SYNC
385
void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
386
enum dma_data_direction dir)
387
{
388
const struct dma_map_ops *ops = get_dma_ops(dev);
389
390
BUG_ON(!valid_dma_direction(dir));
391
if (dma_map_direct(dev, ops))
392
dma_direct_sync_single_for_cpu(dev, addr, size, dir);
393
else if (use_dma_iommu(dev))
394
iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
395
else if (ops->sync_single_for_cpu)
396
ops->sync_single_for_cpu(dev, addr, size, dir);
397
trace_dma_sync_single_for_cpu(dev, addr, size, dir);
398
debug_dma_sync_single_for_cpu(dev, addr, size, dir);
399
}
400
EXPORT_SYMBOL(__dma_sync_single_for_cpu);
401
402
void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
403
size_t size, enum dma_data_direction dir)
404
{
405
const struct dma_map_ops *ops = get_dma_ops(dev);
406
407
BUG_ON(!valid_dma_direction(dir));
408
if (dma_map_direct(dev, ops))
409
dma_direct_sync_single_for_device(dev, addr, size, dir);
410
else if (use_dma_iommu(dev))
411
iommu_dma_sync_single_for_device(dev, addr, size, dir);
412
else if (ops->sync_single_for_device)
413
ops->sync_single_for_device(dev, addr, size, dir);
414
trace_dma_sync_single_for_device(dev, addr, size, dir);
415
debug_dma_sync_single_for_device(dev, addr, size, dir);
416
}
417
EXPORT_SYMBOL(__dma_sync_single_for_device);
418
419
void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
420
int nelems, enum dma_data_direction dir)
421
{
422
const struct dma_map_ops *ops = get_dma_ops(dev);
423
424
BUG_ON(!valid_dma_direction(dir));
425
if (dma_map_direct(dev, ops))
426
dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
427
else if (use_dma_iommu(dev))
428
iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
429
else if (ops->sync_sg_for_cpu)
430
ops->sync_sg_for_cpu(dev, sg, nelems, dir);
431
trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
432
debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
433
}
434
EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
435
436
void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
437
int nelems, enum dma_data_direction dir)
438
{
439
const struct dma_map_ops *ops = get_dma_ops(dev);
440
441
BUG_ON(!valid_dma_direction(dir));
442
if (dma_map_direct(dev, ops))
443
dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
444
else if (use_dma_iommu(dev))
445
iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
446
else if (ops->sync_sg_for_device)
447
ops->sync_sg_for_device(dev, sg, nelems, dir);
448
trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
449
debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
450
}
451
EXPORT_SYMBOL(__dma_sync_sg_for_device);
452
453
bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
454
{
455
const struct dma_map_ops *ops = get_dma_ops(dev);
456
457
if (dma_map_direct(dev, ops))
458
/*
459
* dma_skip_sync could've been reset on first SWIOTLB buffer
460
* mapping, but @dma_addr is not necessary an SWIOTLB buffer.
461
* In this case, fall back to more granular check.
462
*/
463
return dma_direct_need_sync(dev, dma_addr);
464
return true;
465
}
466
EXPORT_SYMBOL_GPL(__dma_need_sync);
467
468
/**
469
* dma_need_unmap - does this device need dma_unmap_* operations
470
* @dev: device to check
471
*
472
* If this function returns %false, drivers can skip calling dma_unmap_* after
473
* finishing an I/O. This function must be called after all mappings that might
474
* need to be unmapped have been performed.
475
*/
476
bool dma_need_unmap(struct device *dev)
477
{
478
if (!dma_map_direct(dev, get_dma_ops(dev)))
479
return true;
480
if (!dev->dma_skip_sync)
481
return true;
482
return IS_ENABLED(CONFIG_DMA_API_DEBUG);
483
}
484
EXPORT_SYMBOL_GPL(dma_need_unmap);
485
486
static void dma_setup_need_sync(struct device *dev)
487
{
488
const struct dma_map_ops *ops = get_dma_ops(dev);
489
490
if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
491
/*
492
* dma_skip_sync will be reset to %false on first SWIOTLB buffer
493
* mapping, if any. During the device initialization, it's
494
* enough to check only for the DMA coherence.
495
*/
496
dev->dma_skip_sync = dev_is_dma_coherent(dev);
497
else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
498
!ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
499
/*
500
* Synchronization is not possible when none of DMA sync ops
501
* is set.
502
*/
503
dev->dma_skip_sync = true;
504
else
505
dev->dma_skip_sync = false;
506
}
507
#else /* !CONFIG_DMA_NEED_SYNC */
508
static inline void dma_setup_need_sync(struct device *dev) { }
509
#endif /* !CONFIG_DMA_NEED_SYNC */
510
511
/*
512
* The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
513
* that the intention is to allow exporting memory allocated via the
514
* coherent DMA APIs through the dma_buf API, which only accepts a
515
* scattertable. This presents a couple of problems:
516
* 1. Not all memory allocated via the coherent DMA APIs is backed by
517
* a struct page
518
* 2. Passing coherent DMA memory into the streaming APIs is not allowed
519
* as we will try to flush the memory through a different alias to that
520
* actually being used (and the flushes are redundant.)
521
*/
522
int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
523
void *cpu_addr, dma_addr_t dma_addr, size_t size,
524
unsigned long attrs)
525
{
526
const struct dma_map_ops *ops = get_dma_ops(dev);
527
528
if (dma_alloc_direct(dev, ops))
529
return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
530
size, attrs);
531
if (use_dma_iommu(dev))
532
return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
533
size, attrs);
534
if (!ops->get_sgtable)
535
return -ENXIO;
536
return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
537
}
538
EXPORT_SYMBOL(dma_get_sgtable_attrs);
539
540
#ifdef CONFIG_MMU
541
/*
542
* Return the page attributes used for mapping dma_alloc_* memory, either in
543
* kernel space if remapping is needed, or to userspace through dma_mmap_*.
544
*/
545
pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
546
{
547
if (dev_is_dma_coherent(dev))
548
return prot;
549
#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
550
if (attrs & DMA_ATTR_WRITE_COMBINE)
551
return pgprot_writecombine(prot);
552
#endif
553
return pgprot_dmacoherent(prot);
554
}
555
#endif /* CONFIG_MMU */
556
557
/**
558
* dma_can_mmap - check if a given device supports dma_mmap_*
559
* @dev: device to check
560
*
561
* Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
562
* map DMA allocations to userspace.
563
*/
564
bool dma_can_mmap(struct device *dev)
565
{
566
const struct dma_map_ops *ops = get_dma_ops(dev);
567
568
if (dma_alloc_direct(dev, ops))
569
return dma_direct_can_mmap(dev);
570
if (use_dma_iommu(dev))
571
return true;
572
return ops->mmap != NULL;
573
}
574
EXPORT_SYMBOL_GPL(dma_can_mmap);
575
576
/**
577
* dma_mmap_attrs - map a coherent DMA allocation into user space
578
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
579
* @vma: vm_area_struct describing requested user mapping
580
* @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
581
* @dma_addr: device-view address returned from dma_alloc_attrs
582
* @size: size of memory originally requested in dma_alloc_attrs
583
* @attrs: attributes of mapping properties requested in dma_alloc_attrs
584
*
585
* Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
586
* space. The coherent DMA buffer must not be freed by the driver until the
587
* user space mapping has been released.
588
*/
589
int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
590
void *cpu_addr, dma_addr_t dma_addr, size_t size,
591
unsigned long attrs)
592
{
593
const struct dma_map_ops *ops = get_dma_ops(dev);
594
595
if (dma_alloc_direct(dev, ops))
596
return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
597
attrs);
598
if (use_dma_iommu(dev))
599
return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
600
attrs);
601
if (!ops->mmap)
602
return -ENXIO;
603
return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
604
}
605
EXPORT_SYMBOL(dma_mmap_attrs);
606
607
u64 dma_get_required_mask(struct device *dev)
608
{
609
const struct dma_map_ops *ops = get_dma_ops(dev);
610
611
if (dma_alloc_direct(dev, ops))
612
return dma_direct_get_required_mask(dev);
613
614
if (use_dma_iommu(dev))
615
return DMA_BIT_MASK(32);
616
617
if (ops->get_required_mask)
618
return ops->get_required_mask(dev);
619
620
/*
621
* We require every DMA ops implementation to at least support a 32-bit
622
* DMA mask (and use bounce buffering if that isn't supported in
623
* hardware). As the direct mapping code has its own routine to
624
* actually report an optimal mask we default to 32-bit here as that
625
* is the right thing for most IOMMUs, and at least not actively
626
* harmful in general.
627
*/
628
return DMA_BIT_MASK(32);
629
}
630
EXPORT_SYMBOL_GPL(dma_get_required_mask);
631
632
void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
633
gfp_t flag, unsigned long attrs)
634
{
635
const struct dma_map_ops *ops = get_dma_ops(dev);
636
void *cpu_addr;
637
638
WARN_ON_ONCE(!dev->coherent_dma_mask);
639
640
/*
641
* DMA allocations can never be turned back into a page pointer, so
642
* requesting compound pages doesn't make sense (and can't even be
643
* supported at all by various backends).
644
*/
645
if (WARN_ON_ONCE(flag & __GFP_COMP))
646
return NULL;
647
648
if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) {
649
trace_dma_alloc(dev, cpu_addr, *dma_handle, size,
650
DMA_BIDIRECTIONAL, flag, attrs);
651
return cpu_addr;
652
}
653
654
/* let the implementation decide on the zone to allocate from: */
655
flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
656
657
if (dma_alloc_direct(dev, ops)) {
658
cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
659
} else if (use_dma_iommu(dev)) {
660
cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
661
} else if (ops->alloc) {
662
cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
663
} else {
664
trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag,
665
attrs);
666
return NULL;
667
}
668
669
trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL,
670
flag, attrs);
671
debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
672
return cpu_addr;
673
}
674
EXPORT_SYMBOL(dma_alloc_attrs);
675
676
void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
677
dma_addr_t dma_handle, unsigned long attrs)
678
{
679
const struct dma_map_ops *ops = get_dma_ops(dev);
680
681
if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
682
return;
683
/*
684
* On non-coherent platforms which implement DMA-coherent buffers via
685
* non-cacheable remaps, ops->free() may call vunmap(). Thus getting
686
* this far in IRQ context is a) at risk of a BUG_ON() or trying to
687
* sleep on some machines, and b) an indication that the driver is
688
* probably misusing the coherent API anyway.
689
*/
690
WARN_ON(irqs_disabled());
691
692
trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL,
693
attrs);
694
if (!cpu_addr)
695
return;
696
697
debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
698
if (dma_alloc_direct(dev, ops))
699
dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
700
else if (use_dma_iommu(dev))
701
iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
702
else if (ops->free)
703
ops->free(dev, size, cpu_addr, dma_handle, attrs);
704
}
705
EXPORT_SYMBOL(dma_free_attrs);
706
707
static struct page *__dma_alloc_pages(struct device *dev, size_t size,
708
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
709
{
710
const struct dma_map_ops *ops = get_dma_ops(dev);
711
712
if (WARN_ON_ONCE(!dev->coherent_dma_mask))
713
return NULL;
714
if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
715
return NULL;
716
if (WARN_ON_ONCE(gfp & __GFP_COMP))
717
return NULL;
718
719
size = PAGE_ALIGN(size);
720
if (dma_alloc_direct(dev, ops))
721
return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
722
if (use_dma_iommu(dev))
723
return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
724
if (!ops->alloc_pages_op)
725
return NULL;
726
return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
727
}
728
729
struct page *dma_alloc_pages(struct device *dev, size_t size,
730
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
731
{
732
struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
733
734
if (page) {
735
trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle,
736
size, dir, gfp, 0);
737
debug_dma_alloc_pages(dev, page, size, dir, *dma_handle, 0);
738
} else {
739
trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0);
740
}
741
return page;
742
}
743
EXPORT_SYMBOL_GPL(dma_alloc_pages);
744
745
static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
746
dma_addr_t dma_handle, enum dma_data_direction dir)
747
{
748
const struct dma_map_ops *ops = get_dma_ops(dev);
749
750
size = PAGE_ALIGN(size);
751
if (dma_alloc_direct(dev, ops))
752
dma_direct_free_pages(dev, size, page, dma_handle, dir);
753
else if (use_dma_iommu(dev))
754
dma_common_free_pages(dev, size, page, dma_handle, dir);
755
else if (ops->free_pages)
756
ops->free_pages(dev, size, page, dma_handle, dir);
757
}
758
759
void dma_free_pages(struct device *dev, size_t size, struct page *page,
760
dma_addr_t dma_handle, enum dma_data_direction dir)
761
{
762
trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0);
763
debug_dma_free_pages(dev, page, size, dir, dma_handle);
764
__dma_free_pages(dev, size, page, dma_handle, dir);
765
}
766
EXPORT_SYMBOL_GPL(dma_free_pages);
767
768
int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
769
size_t size, struct page *page)
770
{
771
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
772
773
if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
774
return -ENXIO;
775
return remap_pfn_range(vma, vma->vm_start,
776
page_to_pfn(page) + vma->vm_pgoff,
777
vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
778
}
779
EXPORT_SYMBOL_GPL(dma_mmap_pages);
780
781
static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
782
enum dma_data_direction dir, gfp_t gfp)
783
{
784
struct sg_table *sgt;
785
struct page *page;
786
787
sgt = kmalloc(sizeof(*sgt), gfp);
788
if (!sgt)
789
return NULL;
790
if (sg_alloc_table(sgt, 1, gfp))
791
goto out_free_sgt;
792
page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
793
if (!page)
794
goto out_free_table;
795
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
796
sg_dma_len(sgt->sgl) = sgt->sgl->length;
797
return sgt;
798
out_free_table:
799
sg_free_table(sgt);
800
out_free_sgt:
801
kfree(sgt);
802
return NULL;
803
}
804
805
struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
806
enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
807
{
808
struct sg_table *sgt;
809
810
if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
811
return NULL;
812
if (WARN_ON_ONCE(gfp & __GFP_COMP))
813
return NULL;
814
815
if (use_dma_iommu(dev))
816
sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
817
else
818
sgt = alloc_single_sgt(dev, size, dir, gfp);
819
820
if (sgt) {
821
sgt->nents = 1;
822
trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs);
823
debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
824
} else {
825
trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs);
826
}
827
return sgt;
828
}
829
EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
830
831
static void free_single_sgt(struct device *dev, size_t size,
832
struct sg_table *sgt, enum dma_data_direction dir)
833
{
834
__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
835
dir);
836
sg_free_table(sgt);
837
kfree(sgt);
838
}
839
840
void dma_free_noncontiguous(struct device *dev, size_t size,
841
struct sg_table *sgt, enum dma_data_direction dir)
842
{
843
trace_dma_free_sgt(dev, sgt, size, dir);
844
debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
845
846
if (use_dma_iommu(dev))
847
iommu_dma_free_noncontiguous(dev, size, sgt, dir);
848
else
849
free_single_sgt(dev, size, sgt, dir);
850
}
851
EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
852
853
void *dma_vmap_noncontiguous(struct device *dev, size_t size,
854
struct sg_table *sgt)
855
{
856
857
if (use_dma_iommu(dev))
858
return iommu_dma_vmap_noncontiguous(dev, size, sgt);
859
860
return page_address(sg_page(sgt->sgl));
861
}
862
EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
863
864
void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
865
{
866
if (use_dma_iommu(dev))
867
iommu_dma_vunmap_noncontiguous(dev, vaddr);
868
}
869
EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
870
871
int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
872
size_t size, struct sg_table *sgt)
873
{
874
if (use_dma_iommu(dev))
875
return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt);
876
return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
877
}
878
EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
879
880
static int dma_supported(struct device *dev, u64 mask)
881
{
882
const struct dma_map_ops *ops = get_dma_ops(dev);
883
884
if (use_dma_iommu(dev)) {
885
if (WARN_ON(ops))
886
return false;
887
return true;
888
}
889
890
/*
891
* ->dma_supported sets and clears the bypass flag, so ignore it here
892
* and always call into the method if there is one.
893
*/
894
if (ops) {
895
if (!ops->dma_supported)
896
return true;
897
return ops->dma_supported(dev, mask);
898
}
899
900
return dma_direct_supported(dev, mask);
901
}
902
903
bool dma_pci_p2pdma_supported(struct device *dev)
904
{
905
const struct dma_map_ops *ops = get_dma_ops(dev);
906
907
/*
908
* Note: dma_ops_bypass is not checked here because P2PDMA should
909
* not be used with dma mapping ops that do not have support even
910
* if the specific device is bypassing them.
911
*/
912
913
/* if ops is not set, dma direct and default IOMMU support P2PDMA */
914
return !ops;
915
}
916
EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
917
918
int dma_set_mask(struct device *dev, u64 mask)
919
{
920
/*
921
* Truncate the mask to the actually supported dma_addr_t width to
922
* avoid generating unsupportable addresses.
923
*/
924
mask = (dma_addr_t)mask;
925
926
if (!dev->dma_mask || !dma_supported(dev, mask))
927
return -EIO;
928
929
arch_dma_set_mask(dev, mask);
930
*dev->dma_mask = mask;
931
dma_setup_need_sync(dev);
932
933
return 0;
934
}
935
EXPORT_SYMBOL(dma_set_mask);
936
937
int dma_set_coherent_mask(struct device *dev, u64 mask)
938
{
939
/*
940
* Truncate the mask to the actually supported dma_addr_t width to
941
* avoid generating unsupportable addresses.
942
*/
943
mask = (dma_addr_t)mask;
944
945
if (!dma_supported(dev, mask))
946
return -EIO;
947
948
dev->coherent_dma_mask = mask;
949
return 0;
950
}
951
EXPORT_SYMBOL(dma_set_coherent_mask);
952
953
static bool __dma_addressing_limited(struct device *dev)
954
{
955
const struct dma_map_ops *ops = get_dma_ops(dev);
956
957
if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
958
dma_get_required_mask(dev))
959
return true;
960
961
if (unlikely(ops) || use_dma_iommu(dev))
962
return false;
963
return !dma_direct_all_ram_mapped(dev);
964
}
965
966
/**
967
* dma_addressing_limited - return if the device is addressing limited
968
* @dev: device to check
969
*
970
* Return %true if the devices DMA mask is too small to address all memory in
971
* the system, else %false. Lack of addressing bits is the prime reason for
972
* bounce buffering, but might not be the only one.
973
*/
974
bool dma_addressing_limited(struct device *dev)
975
{
976
if (!__dma_addressing_limited(dev))
977
return false;
978
979
dev_dbg(dev, "device is DMA addressing limited\n");
980
return true;
981
}
982
EXPORT_SYMBOL_GPL(dma_addressing_limited);
983
984
size_t dma_max_mapping_size(struct device *dev)
985
{
986
const struct dma_map_ops *ops = get_dma_ops(dev);
987
size_t size = SIZE_MAX;
988
989
if (dma_map_direct(dev, ops))
990
size = dma_direct_max_mapping_size(dev);
991
else if (use_dma_iommu(dev))
992
size = iommu_dma_max_mapping_size(dev);
993
else if (ops && ops->max_mapping_size)
994
size = ops->max_mapping_size(dev);
995
996
return size;
997
}
998
EXPORT_SYMBOL_GPL(dma_max_mapping_size);
999
1000
size_t dma_opt_mapping_size(struct device *dev)
1001
{
1002
const struct dma_map_ops *ops = get_dma_ops(dev);
1003
size_t size = SIZE_MAX;
1004
1005
if (use_dma_iommu(dev))
1006
size = iommu_dma_opt_mapping_size();
1007
else if (ops && ops->opt_mapping_size)
1008
size = ops->opt_mapping_size();
1009
1010
return min(dma_max_mapping_size(dev), size);
1011
}
1012
EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
1013
1014
unsigned long dma_get_merge_boundary(struct device *dev)
1015
{
1016
const struct dma_map_ops *ops = get_dma_ops(dev);
1017
1018
if (use_dma_iommu(dev))
1019
return iommu_dma_get_merge_boundary(dev);
1020
1021
if (!ops || !ops->get_merge_boundary)
1022
return 0; /* can't merge */
1023
1024
return ops->get_merge_boundary(dev);
1025
}
1026
EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
1027
1028