Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/khugepaged.c
29501 views
1
// SPDX-License-Identifier: GPL-2.0
2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4
#include <linux/mm.h>
5
#include <linux/sched.h>
6
#include <linux/sched/mm.h>
7
#include <linux/mmu_notifier.h>
8
#include <linux/rmap.h>
9
#include <linux/swap.h>
10
#include <linux/mm_inline.h>
11
#include <linux/kthread.h>
12
#include <linux/khugepaged.h>
13
#include <linux/freezer.h>
14
#include <linux/mman.h>
15
#include <linux/hashtable.h>
16
#include <linux/userfaultfd_k.h>
17
#include <linux/page_idle.h>
18
#include <linux/page_table_check.h>
19
#include <linux/rcupdate_wait.h>
20
#include <linux/swapops.h>
21
#include <linux/shmem_fs.h>
22
#include <linux/dax.h>
23
#include <linux/ksm.h>
24
25
#include <asm/tlb.h>
26
#include <asm/pgalloc.h>
27
#include "internal.h"
28
#include "mm_slot.h"
29
30
enum scan_result {
31
SCAN_FAIL,
32
SCAN_SUCCEED,
33
SCAN_PMD_NULL,
34
SCAN_PMD_NONE,
35
SCAN_PMD_MAPPED,
36
SCAN_EXCEED_NONE_PTE,
37
SCAN_EXCEED_SWAP_PTE,
38
SCAN_EXCEED_SHARED_PTE,
39
SCAN_PTE_NON_PRESENT,
40
SCAN_PTE_UFFD_WP,
41
SCAN_PTE_MAPPED_HUGEPAGE,
42
SCAN_LACK_REFERENCED_PAGE,
43
SCAN_PAGE_NULL,
44
SCAN_SCAN_ABORT,
45
SCAN_PAGE_COUNT,
46
SCAN_PAGE_LRU,
47
SCAN_PAGE_LOCK,
48
SCAN_PAGE_ANON,
49
SCAN_PAGE_COMPOUND,
50
SCAN_ANY_PROCESS,
51
SCAN_VMA_NULL,
52
SCAN_VMA_CHECK,
53
SCAN_ADDRESS_RANGE,
54
SCAN_DEL_PAGE_LRU,
55
SCAN_ALLOC_HUGE_PAGE_FAIL,
56
SCAN_CGROUP_CHARGE_FAIL,
57
SCAN_TRUNCATED,
58
SCAN_PAGE_HAS_PRIVATE,
59
SCAN_STORE_FAILED,
60
SCAN_COPY_MC,
61
SCAN_PAGE_FILLED,
62
};
63
64
#define CREATE_TRACE_POINTS
65
#include <trace/events/huge_memory.h>
66
67
static struct task_struct *khugepaged_thread __read_mostly;
68
static DEFINE_MUTEX(khugepaged_mutex);
69
70
/* default scan 8*512 pte (or vmas) every 30 second */
71
static unsigned int khugepaged_pages_to_scan __read_mostly;
72
static unsigned int khugepaged_pages_collapsed;
73
static unsigned int khugepaged_full_scans;
74
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
75
/* during fragmentation poll the hugepage allocator once every minute */
76
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
77
static unsigned long khugepaged_sleep_expire;
78
static DEFINE_SPINLOCK(khugepaged_mm_lock);
79
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
80
/*
81
* default collapse hugepages if there is at least one pte mapped like
82
* it would have happened if the vma was large enough during page
83
* fault.
84
*
85
* Note that these are only respected if collapse was initiated by khugepaged.
86
*/
87
unsigned int khugepaged_max_ptes_none __read_mostly;
88
static unsigned int khugepaged_max_ptes_swap __read_mostly;
89
static unsigned int khugepaged_max_ptes_shared __read_mostly;
90
91
#define MM_SLOTS_HASH_BITS 10
92
static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
93
94
static struct kmem_cache *mm_slot_cache __ro_after_init;
95
96
struct collapse_control {
97
bool is_khugepaged;
98
99
/* Num pages scanned per node */
100
u32 node_load[MAX_NUMNODES];
101
102
/* nodemask for allocation fallback */
103
nodemask_t alloc_nmask;
104
};
105
106
/**
107
* struct khugepaged_scan - cursor for scanning
108
* @mm_head: the head of the mm list to scan
109
* @mm_slot: the current mm_slot we are scanning
110
* @address: the next address inside that to be scanned
111
*
112
* There is only the one khugepaged_scan instance of this cursor structure.
113
*/
114
struct khugepaged_scan {
115
struct list_head mm_head;
116
struct mm_slot *mm_slot;
117
unsigned long address;
118
};
119
120
static struct khugepaged_scan khugepaged_scan = {
121
.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122
};
123
124
#ifdef CONFIG_SYSFS
125
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126
struct kobj_attribute *attr,
127
char *buf)
128
{
129
return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130
}
131
132
static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133
struct kobj_attribute *attr,
134
const char *buf, size_t count)
135
{
136
unsigned int msecs;
137
int err;
138
139
err = kstrtouint(buf, 10, &msecs);
140
if (err)
141
return -EINVAL;
142
143
khugepaged_scan_sleep_millisecs = msecs;
144
khugepaged_sleep_expire = 0;
145
wake_up_interruptible(&khugepaged_wait);
146
147
return count;
148
}
149
static struct kobj_attribute scan_sleep_millisecs_attr =
150
__ATTR_RW(scan_sleep_millisecs);
151
152
static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
153
struct kobj_attribute *attr,
154
char *buf)
155
{
156
return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
157
}
158
159
static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
160
struct kobj_attribute *attr,
161
const char *buf, size_t count)
162
{
163
unsigned int msecs;
164
int err;
165
166
err = kstrtouint(buf, 10, &msecs);
167
if (err)
168
return -EINVAL;
169
170
khugepaged_alloc_sleep_millisecs = msecs;
171
khugepaged_sleep_expire = 0;
172
wake_up_interruptible(&khugepaged_wait);
173
174
return count;
175
}
176
static struct kobj_attribute alloc_sleep_millisecs_attr =
177
__ATTR_RW(alloc_sleep_millisecs);
178
179
static ssize_t pages_to_scan_show(struct kobject *kobj,
180
struct kobj_attribute *attr,
181
char *buf)
182
{
183
return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
184
}
185
static ssize_t pages_to_scan_store(struct kobject *kobj,
186
struct kobj_attribute *attr,
187
const char *buf, size_t count)
188
{
189
unsigned int pages;
190
int err;
191
192
err = kstrtouint(buf, 10, &pages);
193
if (err || !pages)
194
return -EINVAL;
195
196
khugepaged_pages_to_scan = pages;
197
198
return count;
199
}
200
static struct kobj_attribute pages_to_scan_attr =
201
__ATTR_RW(pages_to_scan);
202
203
static ssize_t pages_collapsed_show(struct kobject *kobj,
204
struct kobj_attribute *attr,
205
char *buf)
206
{
207
return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
208
}
209
static struct kobj_attribute pages_collapsed_attr =
210
__ATTR_RO(pages_collapsed);
211
212
static ssize_t full_scans_show(struct kobject *kobj,
213
struct kobj_attribute *attr,
214
char *buf)
215
{
216
return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
217
}
218
static struct kobj_attribute full_scans_attr =
219
__ATTR_RO(full_scans);
220
221
static ssize_t defrag_show(struct kobject *kobj,
222
struct kobj_attribute *attr, char *buf)
223
{
224
return single_hugepage_flag_show(kobj, attr, buf,
225
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
226
}
227
static ssize_t defrag_store(struct kobject *kobj,
228
struct kobj_attribute *attr,
229
const char *buf, size_t count)
230
{
231
return single_hugepage_flag_store(kobj, attr, buf, count,
232
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
233
}
234
static struct kobj_attribute khugepaged_defrag_attr =
235
__ATTR_RW(defrag);
236
237
/*
238
* max_ptes_none controls if khugepaged should collapse hugepages over
239
* any unmapped ptes in turn potentially increasing the memory
240
* footprint of the vmas. When max_ptes_none is 0 khugepaged will not
241
* reduce the available free memory in the system as it
242
* runs. Increasing max_ptes_none will instead potentially reduce the
243
* free memory in the system during the khugepaged scan.
244
*/
245
static ssize_t max_ptes_none_show(struct kobject *kobj,
246
struct kobj_attribute *attr,
247
char *buf)
248
{
249
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
250
}
251
static ssize_t max_ptes_none_store(struct kobject *kobj,
252
struct kobj_attribute *attr,
253
const char *buf, size_t count)
254
{
255
int err;
256
unsigned long max_ptes_none;
257
258
err = kstrtoul(buf, 10, &max_ptes_none);
259
if (err || max_ptes_none > HPAGE_PMD_NR - 1)
260
return -EINVAL;
261
262
khugepaged_max_ptes_none = max_ptes_none;
263
264
return count;
265
}
266
static struct kobj_attribute khugepaged_max_ptes_none_attr =
267
__ATTR_RW(max_ptes_none);
268
269
static ssize_t max_ptes_swap_show(struct kobject *kobj,
270
struct kobj_attribute *attr,
271
char *buf)
272
{
273
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
274
}
275
276
static ssize_t max_ptes_swap_store(struct kobject *kobj,
277
struct kobj_attribute *attr,
278
const char *buf, size_t count)
279
{
280
int err;
281
unsigned long max_ptes_swap;
282
283
err = kstrtoul(buf, 10, &max_ptes_swap);
284
if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
285
return -EINVAL;
286
287
khugepaged_max_ptes_swap = max_ptes_swap;
288
289
return count;
290
}
291
292
static struct kobj_attribute khugepaged_max_ptes_swap_attr =
293
__ATTR_RW(max_ptes_swap);
294
295
static ssize_t max_ptes_shared_show(struct kobject *kobj,
296
struct kobj_attribute *attr,
297
char *buf)
298
{
299
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
300
}
301
302
static ssize_t max_ptes_shared_store(struct kobject *kobj,
303
struct kobj_attribute *attr,
304
const char *buf, size_t count)
305
{
306
int err;
307
unsigned long max_ptes_shared;
308
309
err = kstrtoul(buf, 10, &max_ptes_shared);
310
if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
311
return -EINVAL;
312
313
khugepaged_max_ptes_shared = max_ptes_shared;
314
315
return count;
316
}
317
318
static struct kobj_attribute khugepaged_max_ptes_shared_attr =
319
__ATTR_RW(max_ptes_shared);
320
321
static struct attribute *khugepaged_attr[] = {
322
&khugepaged_defrag_attr.attr,
323
&khugepaged_max_ptes_none_attr.attr,
324
&khugepaged_max_ptes_swap_attr.attr,
325
&khugepaged_max_ptes_shared_attr.attr,
326
&pages_to_scan_attr.attr,
327
&pages_collapsed_attr.attr,
328
&full_scans_attr.attr,
329
&scan_sleep_millisecs_attr.attr,
330
&alloc_sleep_millisecs_attr.attr,
331
NULL,
332
};
333
334
struct attribute_group khugepaged_attr_group = {
335
.attrs = khugepaged_attr,
336
.name = "khugepaged",
337
};
338
#endif /* CONFIG_SYSFS */
339
340
int hugepage_madvise(struct vm_area_struct *vma,
341
vm_flags_t *vm_flags, int advice)
342
{
343
switch (advice) {
344
case MADV_HUGEPAGE:
345
#ifdef CONFIG_S390
346
/*
347
* qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
348
* can't handle this properly after s390_enable_sie, so we simply
349
* ignore the madvise to prevent qemu from causing a SIGSEGV.
350
*/
351
if (mm_has_pgste(vma->vm_mm))
352
return 0;
353
#endif
354
*vm_flags &= ~VM_NOHUGEPAGE;
355
*vm_flags |= VM_HUGEPAGE;
356
/*
357
* If the vma become good for khugepaged to scan,
358
* register it here without waiting a page fault that
359
* may not happen any time soon.
360
*/
361
khugepaged_enter_vma(vma, *vm_flags);
362
break;
363
case MADV_NOHUGEPAGE:
364
*vm_flags &= ~VM_HUGEPAGE;
365
*vm_flags |= VM_NOHUGEPAGE;
366
/*
367
* Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
368
* this vma even if we leave the mm registered in khugepaged if
369
* it got registered before VM_NOHUGEPAGE was set.
370
*/
371
break;
372
}
373
374
return 0;
375
}
376
377
int __init khugepaged_init(void)
378
{
379
mm_slot_cache = KMEM_CACHE(mm_slot, 0);
380
if (!mm_slot_cache)
381
return -ENOMEM;
382
383
khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
384
khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
385
khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
386
khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
387
388
return 0;
389
}
390
391
void __init khugepaged_destroy(void)
392
{
393
kmem_cache_destroy(mm_slot_cache);
394
}
395
396
static inline int hpage_collapse_test_exit(struct mm_struct *mm)
397
{
398
return atomic_read(&mm->mm_users) == 0;
399
}
400
401
static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
402
{
403
return hpage_collapse_test_exit(mm) ||
404
mm_flags_test(MMF_DISABLE_THP_COMPLETELY, mm);
405
}
406
407
static bool hugepage_pmd_enabled(void)
408
{
409
/*
410
* We cover the anon, shmem and the file-backed case here; file-backed
411
* hugepages, when configured in, are determined by the global control.
412
* Anon pmd-sized hugepages are determined by the pmd-size control.
413
* Shmem pmd-sized hugepages are also determined by its pmd-size control,
414
* except when the global shmem_huge is set to SHMEM_HUGE_DENY.
415
*/
416
if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
417
hugepage_global_enabled())
418
return true;
419
if (test_bit(PMD_ORDER, &huge_anon_orders_always))
420
return true;
421
if (test_bit(PMD_ORDER, &huge_anon_orders_madvise))
422
return true;
423
if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) &&
424
hugepage_global_enabled())
425
return true;
426
if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled())
427
return true;
428
return false;
429
}
430
431
void __khugepaged_enter(struct mm_struct *mm)
432
{
433
struct mm_slot *slot;
434
int wakeup;
435
436
/* __khugepaged_exit() must not run from under us */
437
VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
438
if (unlikely(mm_flags_test_and_set(MMF_VM_HUGEPAGE, mm)))
439
return;
440
441
slot = mm_slot_alloc(mm_slot_cache);
442
if (!slot)
443
return;
444
445
spin_lock(&khugepaged_mm_lock);
446
mm_slot_insert(mm_slots_hash, mm, slot);
447
/*
448
* Insert just behind the scanning cursor, to let the area settle
449
* down a little.
450
*/
451
wakeup = list_empty(&khugepaged_scan.mm_head);
452
list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
453
spin_unlock(&khugepaged_mm_lock);
454
455
mmgrab(mm);
456
if (wakeup)
457
wake_up_interruptible(&khugepaged_wait);
458
}
459
460
void khugepaged_enter_vma(struct vm_area_struct *vma,
461
vm_flags_t vm_flags)
462
{
463
if (!mm_flags_test(MMF_VM_HUGEPAGE, vma->vm_mm) &&
464
hugepage_pmd_enabled()) {
465
if (thp_vma_allowable_order(vma, vm_flags, TVA_KHUGEPAGED, PMD_ORDER))
466
__khugepaged_enter(vma->vm_mm);
467
}
468
}
469
470
void __khugepaged_exit(struct mm_struct *mm)
471
{
472
struct mm_slot *slot;
473
int free = 0;
474
475
spin_lock(&khugepaged_mm_lock);
476
slot = mm_slot_lookup(mm_slots_hash, mm);
477
if (slot && khugepaged_scan.mm_slot != slot) {
478
hash_del(&slot->hash);
479
list_del(&slot->mm_node);
480
free = 1;
481
}
482
spin_unlock(&khugepaged_mm_lock);
483
484
if (free) {
485
mm_flags_clear(MMF_VM_HUGEPAGE, mm);
486
mm_slot_free(mm_slot_cache, slot);
487
mmdrop(mm);
488
} else if (slot) {
489
/*
490
* This is required to serialize against
491
* hpage_collapse_test_exit() (which is guaranteed to run
492
* under mmap sem read mode). Stop here (after we return all
493
* pagetables will be destroyed) until khugepaged has finished
494
* working on the pagetables under the mmap_lock.
495
*/
496
mmap_write_lock(mm);
497
mmap_write_unlock(mm);
498
}
499
}
500
501
static void release_pte_folio(struct folio *folio)
502
{
503
node_stat_mod_folio(folio,
504
NR_ISOLATED_ANON + folio_is_file_lru(folio),
505
-folio_nr_pages(folio));
506
folio_unlock(folio);
507
folio_putback_lru(folio);
508
}
509
510
static void release_pte_pages(pte_t *pte, pte_t *_pte,
511
struct list_head *compound_pagelist)
512
{
513
struct folio *folio, *tmp;
514
515
while (--_pte >= pte) {
516
pte_t pteval = ptep_get(_pte);
517
unsigned long pfn;
518
519
if (pte_none(pteval))
520
continue;
521
pfn = pte_pfn(pteval);
522
if (is_zero_pfn(pfn))
523
continue;
524
folio = pfn_folio(pfn);
525
if (folio_test_large(folio))
526
continue;
527
release_pte_folio(folio);
528
}
529
530
list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
531
list_del(&folio->lru);
532
release_pte_folio(folio);
533
}
534
}
535
536
static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
537
unsigned long start_addr,
538
pte_t *pte,
539
struct collapse_control *cc,
540
struct list_head *compound_pagelist)
541
{
542
struct page *page = NULL;
543
struct folio *folio = NULL;
544
unsigned long addr = start_addr;
545
pte_t *_pte;
546
int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
547
548
for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
549
_pte++, addr += PAGE_SIZE) {
550
pte_t pteval = ptep_get(_pte);
551
if (pte_none(pteval) || (pte_present(pteval) &&
552
is_zero_pfn(pte_pfn(pteval)))) {
553
++none_or_zero;
554
if (!userfaultfd_armed(vma) &&
555
(!cc->is_khugepaged ||
556
none_or_zero <= khugepaged_max_ptes_none)) {
557
continue;
558
} else {
559
result = SCAN_EXCEED_NONE_PTE;
560
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
561
goto out;
562
}
563
}
564
if (!pte_present(pteval)) {
565
result = SCAN_PTE_NON_PRESENT;
566
goto out;
567
}
568
if (pte_uffd_wp(pteval)) {
569
result = SCAN_PTE_UFFD_WP;
570
goto out;
571
}
572
page = vm_normal_page(vma, addr, pteval);
573
if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
574
result = SCAN_PAGE_NULL;
575
goto out;
576
}
577
578
folio = page_folio(page);
579
VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
580
581
/* See hpage_collapse_scan_pmd(). */
582
if (folio_maybe_mapped_shared(folio)) {
583
++shared;
584
if (cc->is_khugepaged &&
585
shared > khugepaged_max_ptes_shared) {
586
result = SCAN_EXCEED_SHARED_PTE;
587
count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
588
goto out;
589
}
590
}
591
592
if (folio_test_large(folio)) {
593
struct folio *f;
594
595
/*
596
* Check if we have dealt with the compound page
597
* already
598
*/
599
list_for_each_entry(f, compound_pagelist, lru) {
600
if (folio == f)
601
goto next;
602
}
603
}
604
605
/*
606
* We can do it before folio_isolate_lru because the
607
* folio can't be freed from under us. NOTE: PG_lock
608
* is needed to serialize against split_huge_page
609
* when invoked from the VM.
610
*/
611
if (!folio_trylock(folio)) {
612
result = SCAN_PAGE_LOCK;
613
goto out;
614
}
615
616
/*
617
* Check if the page has any GUP (or other external) pins.
618
*
619
* The page table that maps the page has been already unlinked
620
* from the page table tree and this process cannot get
621
* an additional pin on the page.
622
*
623
* New pins can come later if the page is shared across fork,
624
* but not from this process. The other process cannot write to
625
* the page, only trigger CoW.
626
*/
627
if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
628
folio_unlock(folio);
629
result = SCAN_PAGE_COUNT;
630
goto out;
631
}
632
633
/*
634
* Isolate the page to avoid collapsing an hugepage
635
* currently in use by the VM.
636
*/
637
if (!folio_isolate_lru(folio)) {
638
folio_unlock(folio);
639
result = SCAN_DEL_PAGE_LRU;
640
goto out;
641
}
642
node_stat_mod_folio(folio,
643
NR_ISOLATED_ANON + folio_is_file_lru(folio),
644
folio_nr_pages(folio));
645
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
646
VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
647
648
if (folio_test_large(folio))
649
list_add_tail(&folio->lru, compound_pagelist);
650
next:
651
/*
652
* If collapse was initiated by khugepaged, check that there is
653
* enough young pte to justify collapsing the page
654
*/
655
if (cc->is_khugepaged &&
656
(pte_young(pteval) || folio_test_young(folio) ||
657
folio_test_referenced(folio) ||
658
mmu_notifier_test_young(vma->vm_mm, addr)))
659
referenced++;
660
}
661
662
if (unlikely(cc->is_khugepaged && !referenced)) {
663
result = SCAN_LACK_REFERENCED_PAGE;
664
} else {
665
result = SCAN_SUCCEED;
666
trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
667
referenced, result);
668
return result;
669
}
670
out:
671
release_pte_pages(pte, _pte, compound_pagelist);
672
trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
673
referenced, result);
674
return result;
675
}
676
677
static void __collapse_huge_page_copy_succeeded(pte_t *pte,
678
struct vm_area_struct *vma,
679
unsigned long address,
680
spinlock_t *ptl,
681
struct list_head *compound_pagelist)
682
{
683
unsigned long end = address + HPAGE_PMD_SIZE;
684
struct folio *src, *tmp;
685
pte_t pteval;
686
pte_t *_pte;
687
unsigned int nr_ptes;
688
689
for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte += nr_ptes,
690
address += nr_ptes * PAGE_SIZE) {
691
nr_ptes = 1;
692
pteval = ptep_get(_pte);
693
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
694
add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
695
if (is_zero_pfn(pte_pfn(pteval))) {
696
/*
697
* ptl mostly unnecessary.
698
*/
699
spin_lock(ptl);
700
ptep_clear(vma->vm_mm, address, _pte);
701
spin_unlock(ptl);
702
ksm_might_unmap_zero_page(vma->vm_mm, pteval);
703
}
704
} else {
705
struct page *src_page = pte_page(pteval);
706
707
src = page_folio(src_page);
708
709
if (folio_test_large(src)) {
710
unsigned int max_nr_ptes = (end - address) >> PAGE_SHIFT;
711
712
nr_ptes = folio_pte_batch(src, _pte, pteval, max_nr_ptes);
713
} else {
714
release_pte_folio(src);
715
}
716
717
/*
718
* ptl mostly unnecessary, but preempt has to
719
* be disabled to update the per-cpu stats
720
* inside folio_remove_rmap_pte().
721
*/
722
spin_lock(ptl);
723
clear_ptes(vma->vm_mm, address, _pte, nr_ptes);
724
folio_remove_rmap_ptes(src, src_page, nr_ptes, vma);
725
spin_unlock(ptl);
726
free_swap_cache(src);
727
folio_put_refs(src, nr_ptes);
728
}
729
}
730
731
list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
732
list_del(&src->lru);
733
node_stat_sub_folio(src, NR_ISOLATED_ANON +
734
folio_is_file_lru(src));
735
folio_unlock(src);
736
free_swap_cache(src);
737
folio_putback_lru(src);
738
}
739
}
740
741
static void __collapse_huge_page_copy_failed(pte_t *pte,
742
pmd_t *pmd,
743
pmd_t orig_pmd,
744
struct vm_area_struct *vma,
745
struct list_head *compound_pagelist)
746
{
747
spinlock_t *pmd_ptl;
748
749
/*
750
* Re-establish the PMD to point to the original page table
751
* entry. Restoring PMD needs to be done prior to releasing
752
* pages. Since pages are still isolated and locked here,
753
* acquiring anon_vma_lock_write is unnecessary.
754
*/
755
pmd_ptl = pmd_lock(vma->vm_mm, pmd);
756
pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
757
spin_unlock(pmd_ptl);
758
/*
759
* Release both raw and compound pages isolated
760
* in __collapse_huge_page_isolate.
761
*/
762
release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
763
}
764
765
/*
766
* __collapse_huge_page_copy - attempts to copy memory contents from raw
767
* pages to a hugepage. Cleans up the raw pages if copying succeeds;
768
* otherwise restores the original page table and releases isolated raw pages.
769
* Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
770
*
771
* @pte: starting of the PTEs to copy from
772
* @folio: the new hugepage to copy contents to
773
* @pmd: pointer to the new hugepage's PMD
774
* @orig_pmd: the original raw pages' PMD
775
* @vma: the original raw pages' virtual memory area
776
* @address: starting address to copy
777
* @ptl: lock on raw pages' PTEs
778
* @compound_pagelist: list that stores compound pages
779
*/
780
static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
781
pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
782
unsigned long address, spinlock_t *ptl,
783
struct list_head *compound_pagelist)
784
{
785
unsigned int i;
786
int result = SCAN_SUCCEED;
787
788
/*
789
* Copying pages' contents is subject to memory poison at any iteration.
790
*/
791
for (i = 0; i < HPAGE_PMD_NR; i++) {
792
pte_t pteval = ptep_get(pte + i);
793
struct page *page = folio_page(folio, i);
794
unsigned long src_addr = address + i * PAGE_SIZE;
795
struct page *src_page;
796
797
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
798
clear_user_highpage(page, src_addr);
799
continue;
800
}
801
src_page = pte_page(pteval);
802
if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
803
result = SCAN_COPY_MC;
804
break;
805
}
806
}
807
808
if (likely(result == SCAN_SUCCEED))
809
__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
810
compound_pagelist);
811
else
812
__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
813
compound_pagelist);
814
815
return result;
816
}
817
818
static void khugepaged_alloc_sleep(void)
819
{
820
DEFINE_WAIT(wait);
821
822
add_wait_queue(&khugepaged_wait, &wait);
823
__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
824
schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
825
remove_wait_queue(&khugepaged_wait, &wait);
826
}
827
828
struct collapse_control khugepaged_collapse_control = {
829
.is_khugepaged = true,
830
};
831
832
static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
833
{
834
int i;
835
836
/*
837
* If node_reclaim_mode is disabled, then no extra effort is made to
838
* allocate memory locally.
839
*/
840
if (!node_reclaim_enabled())
841
return false;
842
843
/* If there is a count for this node already, it must be acceptable */
844
if (cc->node_load[nid])
845
return false;
846
847
for (i = 0; i < MAX_NUMNODES; i++) {
848
if (!cc->node_load[i])
849
continue;
850
if (node_distance(nid, i) > node_reclaim_distance)
851
return true;
852
}
853
return false;
854
}
855
856
#define khugepaged_defrag() \
857
(transparent_hugepage_flags & \
858
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
859
860
/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
861
static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
862
{
863
return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
864
}
865
866
#ifdef CONFIG_NUMA
867
static int hpage_collapse_find_target_node(struct collapse_control *cc)
868
{
869
int nid, target_node = 0, max_value = 0;
870
871
/* find first node with max normal pages hit */
872
for (nid = 0; nid < MAX_NUMNODES; nid++)
873
if (cc->node_load[nid] > max_value) {
874
max_value = cc->node_load[nid];
875
target_node = nid;
876
}
877
878
for_each_online_node(nid) {
879
if (max_value == cc->node_load[nid])
880
node_set(nid, cc->alloc_nmask);
881
}
882
883
return target_node;
884
}
885
#else
886
static int hpage_collapse_find_target_node(struct collapse_control *cc)
887
{
888
return 0;
889
}
890
#endif
891
892
/*
893
* If mmap_lock temporarily dropped, revalidate vma
894
* before taking mmap_lock.
895
* Returns enum scan_result value.
896
*/
897
898
static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
899
bool expect_anon,
900
struct vm_area_struct **vmap,
901
struct collapse_control *cc)
902
{
903
struct vm_area_struct *vma;
904
enum tva_type type = cc->is_khugepaged ? TVA_KHUGEPAGED :
905
TVA_FORCED_COLLAPSE;
906
907
if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
908
return SCAN_ANY_PROCESS;
909
910
*vmap = vma = find_vma(mm, address);
911
if (!vma)
912
return SCAN_VMA_NULL;
913
914
if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
915
return SCAN_ADDRESS_RANGE;
916
if (!thp_vma_allowable_order(vma, vma->vm_flags, type, PMD_ORDER))
917
return SCAN_VMA_CHECK;
918
/*
919
* Anon VMA expected, the address may be unmapped then
920
* remapped to file after khugepaged reaquired the mmap_lock.
921
*
922
* thp_vma_allowable_order may return true for qualified file
923
* vmas.
924
*/
925
if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
926
return SCAN_PAGE_ANON;
927
return SCAN_SUCCEED;
928
}
929
930
static inline int check_pmd_state(pmd_t *pmd)
931
{
932
pmd_t pmde = pmdp_get_lockless(pmd);
933
934
if (pmd_none(pmde))
935
return SCAN_PMD_NONE;
936
937
/*
938
* The folio may be under migration when khugepaged is trying to
939
* collapse it. Migration success or failure will eventually end
940
* up with a present PMD mapping a folio again.
941
*/
942
if (is_pmd_migration_entry(pmde))
943
return SCAN_PMD_MAPPED;
944
if (!pmd_present(pmde))
945
return SCAN_PMD_NULL;
946
if (pmd_trans_huge(pmde))
947
return SCAN_PMD_MAPPED;
948
if (pmd_bad(pmde))
949
return SCAN_PMD_NULL;
950
return SCAN_SUCCEED;
951
}
952
953
static int find_pmd_or_thp_or_none(struct mm_struct *mm,
954
unsigned long address,
955
pmd_t **pmd)
956
{
957
*pmd = mm_find_pmd(mm, address);
958
if (!*pmd)
959
return SCAN_PMD_NULL;
960
961
return check_pmd_state(*pmd);
962
}
963
964
static int check_pmd_still_valid(struct mm_struct *mm,
965
unsigned long address,
966
pmd_t *pmd)
967
{
968
pmd_t *new_pmd;
969
int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
970
971
if (result != SCAN_SUCCEED)
972
return result;
973
if (new_pmd != pmd)
974
return SCAN_FAIL;
975
return SCAN_SUCCEED;
976
}
977
978
/*
979
* Bring missing pages in from swap, to complete THP collapse.
980
* Only done if hpage_collapse_scan_pmd believes it is worthwhile.
981
*
982
* Called and returns without pte mapped or spinlocks held.
983
* Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
984
*/
985
static int __collapse_huge_page_swapin(struct mm_struct *mm,
986
struct vm_area_struct *vma,
987
unsigned long start_addr, pmd_t *pmd,
988
int referenced)
989
{
990
int swapped_in = 0;
991
vm_fault_t ret = 0;
992
unsigned long addr, end = start_addr + (HPAGE_PMD_NR * PAGE_SIZE);
993
int result;
994
pte_t *pte = NULL;
995
spinlock_t *ptl;
996
997
for (addr = start_addr; addr < end; addr += PAGE_SIZE) {
998
struct vm_fault vmf = {
999
.vma = vma,
1000
.address = addr,
1001
.pgoff = linear_page_index(vma, addr),
1002
.flags = FAULT_FLAG_ALLOW_RETRY,
1003
.pmd = pmd,
1004
};
1005
1006
if (!pte++) {
1007
/*
1008
* Here the ptl is only used to check pte_same() in
1009
* do_swap_page(), so readonly version is enough.
1010
*/
1011
pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl);
1012
if (!pte) {
1013
mmap_read_unlock(mm);
1014
result = SCAN_PMD_NULL;
1015
goto out;
1016
}
1017
}
1018
1019
vmf.orig_pte = ptep_get_lockless(pte);
1020
if (!is_swap_pte(vmf.orig_pte))
1021
continue;
1022
1023
vmf.pte = pte;
1024
vmf.ptl = ptl;
1025
ret = do_swap_page(&vmf);
1026
/* Which unmaps pte (after perhaps re-checking the entry) */
1027
pte = NULL;
1028
1029
/*
1030
* do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1031
* Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1032
* we do not retry here and swap entry will remain in pagetable
1033
* resulting in later failure.
1034
*/
1035
if (ret & VM_FAULT_RETRY) {
1036
/* Likely, but not guaranteed, that page lock failed */
1037
result = SCAN_PAGE_LOCK;
1038
goto out;
1039
}
1040
if (ret & VM_FAULT_ERROR) {
1041
mmap_read_unlock(mm);
1042
result = SCAN_FAIL;
1043
goto out;
1044
}
1045
swapped_in++;
1046
}
1047
1048
if (pte)
1049
pte_unmap(pte);
1050
1051
/* Drain LRU cache to remove extra pin on the swapped in pages */
1052
if (swapped_in)
1053
lru_add_drain();
1054
1055
result = SCAN_SUCCEED;
1056
out:
1057
trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1058
return result;
1059
}
1060
1061
static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1062
struct collapse_control *cc)
1063
{
1064
gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1065
GFP_TRANSHUGE);
1066
int node = hpage_collapse_find_target_node(cc);
1067
struct folio *folio;
1068
1069
folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1070
if (!folio) {
1071
*foliop = NULL;
1072
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1073
return SCAN_ALLOC_HUGE_PAGE_FAIL;
1074
}
1075
1076
count_vm_event(THP_COLLAPSE_ALLOC);
1077
if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1078
folio_put(folio);
1079
*foliop = NULL;
1080
return SCAN_CGROUP_CHARGE_FAIL;
1081
}
1082
1083
count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1084
1085
*foliop = folio;
1086
return SCAN_SUCCEED;
1087
}
1088
1089
static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1090
int referenced, int unmapped,
1091
struct collapse_control *cc)
1092
{
1093
LIST_HEAD(compound_pagelist);
1094
pmd_t *pmd, _pmd;
1095
pte_t *pte;
1096
pgtable_t pgtable;
1097
struct folio *folio;
1098
spinlock_t *pmd_ptl, *pte_ptl;
1099
int result = SCAN_FAIL;
1100
struct vm_area_struct *vma;
1101
struct mmu_notifier_range range;
1102
1103
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1104
1105
/*
1106
* Before allocating the hugepage, release the mmap_lock read lock.
1107
* The allocation can take potentially a long time if it involves
1108
* sync compaction, and we do not need to hold the mmap_lock during
1109
* that. We will recheck the vma after taking it again in write mode.
1110
*/
1111
mmap_read_unlock(mm);
1112
1113
result = alloc_charge_folio(&folio, mm, cc);
1114
if (result != SCAN_SUCCEED)
1115
goto out_nolock;
1116
1117
mmap_read_lock(mm);
1118
result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1119
if (result != SCAN_SUCCEED) {
1120
mmap_read_unlock(mm);
1121
goto out_nolock;
1122
}
1123
1124
result = find_pmd_or_thp_or_none(mm, address, &pmd);
1125
if (result != SCAN_SUCCEED) {
1126
mmap_read_unlock(mm);
1127
goto out_nolock;
1128
}
1129
1130
if (unmapped) {
1131
/*
1132
* __collapse_huge_page_swapin will return with mmap_lock
1133
* released when it fails. So we jump out_nolock directly in
1134
* that case. Continuing to collapse causes inconsistency.
1135
*/
1136
result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1137
referenced);
1138
if (result != SCAN_SUCCEED)
1139
goto out_nolock;
1140
}
1141
1142
mmap_read_unlock(mm);
1143
/*
1144
* Prevent all access to pagetables with the exception of
1145
* gup_fast later handled by the ptep_clear_flush and the VM
1146
* handled by the anon_vma lock + PG_lock.
1147
*
1148
* UFFDIO_MOVE is prevented to race as well thanks to the
1149
* mmap_lock.
1150
*/
1151
mmap_write_lock(mm);
1152
result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1153
if (result != SCAN_SUCCEED)
1154
goto out_up_write;
1155
/* check if the pmd is still valid */
1156
vma_start_write(vma);
1157
result = check_pmd_still_valid(mm, address, pmd);
1158
if (result != SCAN_SUCCEED)
1159
goto out_up_write;
1160
1161
anon_vma_lock_write(vma->anon_vma);
1162
1163
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1164
address + HPAGE_PMD_SIZE);
1165
mmu_notifier_invalidate_range_start(&range);
1166
1167
pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1168
/*
1169
* This removes any huge TLB entry from the CPU so we won't allow
1170
* huge and small TLB entries for the same virtual address to
1171
* avoid the risk of CPU bugs in that area.
1172
*
1173
* Parallel GUP-fast is fine since GUP-fast will back off when
1174
* it detects PMD is changed.
1175
*/
1176
_pmd = pmdp_collapse_flush(vma, address, pmd);
1177
spin_unlock(pmd_ptl);
1178
mmu_notifier_invalidate_range_end(&range);
1179
tlb_remove_table_sync_one();
1180
1181
pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1182
if (pte) {
1183
result = __collapse_huge_page_isolate(vma, address, pte, cc,
1184
&compound_pagelist);
1185
spin_unlock(pte_ptl);
1186
} else {
1187
result = SCAN_PMD_NULL;
1188
}
1189
1190
if (unlikely(result != SCAN_SUCCEED)) {
1191
if (pte)
1192
pte_unmap(pte);
1193
spin_lock(pmd_ptl);
1194
BUG_ON(!pmd_none(*pmd));
1195
/*
1196
* We can only use set_pmd_at when establishing
1197
* hugepmds and never for establishing regular pmds that
1198
* points to regular pagetables. Use pmd_populate for that
1199
*/
1200
pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1201
spin_unlock(pmd_ptl);
1202
anon_vma_unlock_write(vma->anon_vma);
1203
goto out_up_write;
1204
}
1205
1206
/*
1207
* All pages are isolated and locked so anon_vma rmap
1208
* can't run anymore.
1209
*/
1210
anon_vma_unlock_write(vma->anon_vma);
1211
1212
result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1213
vma, address, pte_ptl,
1214
&compound_pagelist);
1215
pte_unmap(pte);
1216
if (unlikely(result != SCAN_SUCCEED))
1217
goto out_up_write;
1218
1219
/*
1220
* The smp_wmb() inside __folio_mark_uptodate() ensures the
1221
* copy_huge_page writes become visible before the set_pmd_at()
1222
* write.
1223
*/
1224
__folio_mark_uptodate(folio);
1225
pgtable = pmd_pgtable(_pmd);
1226
1227
_pmd = folio_mk_pmd(folio, vma->vm_page_prot);
1228
_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1229
1230
spin_lock(pmd_ptl);
1231
BUG_ON(!pmd_none(*pmd));
1232
folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
1233
folio_add_lru_vma(folio, vma);
1234
pgtable_trans_huge_deposit(mm, pmd, pgtable);
1235
set_pmd_at(mm, address, pmd, _pmd);
1236
update_mmu_cache_pmd(vma, address, pmd);
1237
deferred_split_folio(folio, false);
1238
spin_unlock(pmd_ptl);
1239
1240
folio = NULL;
1241
1242
result = SCAN_SUCCEED;
1243
out_up_write:
1244
mmap_write_unlock(mm);
1245
out_nolock:
1246
if (folio)
1247
folio_put(folio);
1248
trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1249
return result;
1250
}
1251
1252
static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1253
struct vm_area_struct *vma,
1254
unsigned long start_addr, bool *mmap_locked,
1255
struct collapse_control *cc)
1256
{
1257
pmd_t *pmd;
1258
pte_t *pte, *_pte;
1259
int result = SCAN_FAIL, referenced = 0;
1260
int none_or_zero = 0, shared = 0;
1261
struct page *page = NULL;
1262
struct folio *folio = NULL;
1263
unsigned long addr;
1264
spinlock_t *ptl;
1265
int node = NUMA_NO_NODE, unmapped = 0;
1266
1267
VM_BUG_ON(start_addr & ~HPAGE_PMD_MASK);
1268
1269
result = find_pmd_or_thp_or_none(mm, start_addr, &pmd);
1270
if (result != SCAN_SUCCEED)
1271
goto out;
1272
1273
memset(cc->node_load, 0, sizeof(cc->node_load));
1274
nodes_clear(cc->alloc_nmask);
1275
pte = pte_offset_map_lock(mm, pmd, start_addr, &ptl);
1276
if (!pte) {
1277
result = SCAN_PMD_NULL;
1278
goto out;
1279
}
1280
1281
for (addr = start_addr, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1282
_pte++, addr += PAGE_SIZE) {
1283
pte_t pteval = ptep_get(_pte);
1284
if (is_swap_pte(pteval)) {
1285
++unmapped;
1286
if (!cc->is_khugepaged ||
1287
unmapped <= khugepaged_max_ptes_swap) {
1288
/*
1289
* Always be strict with uffd-wp
1290
* enabled swap entries. Please see
1291
* comment below for pte_uffd_wp().
1292
*/
1293
if (pte_swp_uffd_wp_any(pteval)) {
1294
result = SCAN_PTE_UFFD_WP;
1295
goto out_unmap;
1296
}
1297
continue;
1298
} else {
1299
result = SCAN_EXCEED_SWAP_PTE;
1300
count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1301
goto out_unmap;
1302
}
1303
}
1304
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1305
++none_or_zero;
1306
if (!userfaultfd_armed(vma) &&
1307
(!cc->is_khugepaged ||
1308
none_or_zero <= khugepaged_max_ptes_none)) {
1309
continue;
1310
} else {
1311
result = SCAN_EXCEED_NONE_PTE;
1312
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1313
goto out_unmap;
1314
}
1315
}
1316
if (pte_uffd_wp(pteval)) {
1317
/*
1318
* Don't collapse the page if any of the small
1319
* PTEs are armed with uffd write protection.
1320
* Here we can also mark the new huge pmd as
1321
* write protected if any of the small ones is
1322
* marked but that could bring unknown
1323
* userfault messages that falls outside of
1324
* the registered range. So, just be simple.
1325
*/
1326
result = SCAN_PTE_UFFD_WP;
1327
goto out_unmap;
1328
}
1329
1330
page = vm_normal_page(vma, addr, pteval);
1331
if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1332
result = SCAN_PAGE_NULL;
1333
goto out_unmap;
1334
}
1335
folio = page_folio(page);
1336
1337
if (!folio_test_anon(folio)) {
1338
result = SCAN_PAGE_ANON;
1339
goto out_unmap;
1340
}
1341
1342
/*
1343
* We treat a single page as shared if any part of the THP
1344
* is shared.
1345
*/
1346
if (folio_maybe_mapped_shared(folio)) {
1347
++shared;
1348
if (cc->is_khugepaged &&
1349
shared > khugepaged_max_ptes_shared) {
1350
result = SCAN_EXCEED_SHARED_PTE;
1351
count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1352
goto out_unmap;
1353
}
1354
}
1355
1356
/*
1357
* Record which node the original page is from and save this
1358
* information to cc->node_load[].
1359
* Khugepaged will allocate hugepage from the node has the max
1360
* hit record.
1361
*/
1362
node = folio_nid(folio);
1363
if (hpage_collapse_scan_abort(node, cc)) {
1364
result = SCAN_SCAN_ABORT;
1365
goto out_unmap;
1366
}
1367
cc->node_load[node]++;
1368
if (!folio_test_lru(folio)) {
1369
result = SCAN_PAGE_LRU;
1370
goto out_unmap;
1371
}
1372
if (folio_test_locked(folio)) {
1373
result = SCAN_PAGE_LOCK;
1374
goto out_unmap;
1375
}
1376
1377
/*
1378
* Check if the page has any GUP (or other external) pins.
1379
*
1380
* Here the check may be racy:
1381
* it may see folio_mapcount() > folio_ref_count().
1382
* But such case is ephemeral we could always retry collapse
1383
* later. However it may report false positive if the page
1384
* has excessive GUP pins (i.e. 512). Anyway the same check
1385
* will be done again later the risk seems low.
1386
*/
1387
if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
1388
result = SCAN_PAGE_COUNT;
1389
goto out_unmap;
1390
}
1391
1392
/*
1393
* If collapse was initiated by khugepaged, check that there is
1394
* enough young pte to justify collapsing the page
1395
*/
1396
if (cc->is_khugepaged &&
1397
(pte_young(pteval) || folio_test_young(folio) ||
1398
folio_test_referenced(folio) ||
1399
mmu_notifier_test_young(vma->vm_mm, addr)))
1400
referenced++;
1401
}
1402
if (cc->is_khugepaged &&
1403
(!referenced ||
1404
(unmapped && referenced < HPAGE_PMD_NR / 2))) {
1405
result = SCAN_LACK_REFERENCED_PAGE;
1406
} else {
1407
result = SCAN_SUCCEED;
1408
}
1409
out_unmap:
1410
pte_unmap_unlock(pte, ptl);
1411
if (result == SCAN_SUCCEED) {
1412
result = collapse_huge_page(mm, start_addr, referenced,
1413
unmapped, cc);
1414
/* collapse_huge_page will return with the mmap_lock released */
1415
*mmap_locked = false;
1416
}
1417
out:
1418
trace_mm_khugepaged_scan_pmd(mm, folio, referenced,
1419
none_or_zero, result, unmapped);
1420
return result;
1421
}
1422
1423
static void collect_mm_slot(struct mm_slot *slot)
1424
{
1425
struct mm_struct *mm = slot->mm;
1426
1427
lockdep_assert_held(&khugepaged_mm_lock);
1428
1429
if (hpage_collapse_test_exit(mm)) {
1430
/* free mm_slot */
1431
hash_del(&slot->hash);
1432
list_del(&slot->mm_node);
1433
1434
/*
1435
* Not strictly needed because the mm exited already.
1436
*
1437
* mm_flags_clear(MMF_VM_HUGEPAGE, mm);
1438
*/
1439
1440
/* khugepaged_mm_lock actually not necessary for the below */
1441
mm_slot_free(mm_slot_cache, slot);
1442
mmdrop(mm);
1443
}
1444
}
1445
1446
/* folio must be locked, and mmap_lock must be held */
1447
static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1448
pmd_t *pmdp, struct folio *folio, struct page *page)
1449
{
1450
struct mm_struct *mm = vma->vm_mm;
1451
struct vm_fault vmf = {
1452
.vma = vma,
1453
.address = addr,
1454
.flags = 0,
1455
};
1456
pgd_t *pgdp;
1457
p4d_t *p4dp;
1458
pud_t *pudp;
1459
1460
mmap_assert_locked(vma->vm_mm);
1461
1462
if (!pmdp) {
1463
pgdp = pgd_offset(mm, addr);
1464
p4dp = p4d_alloc(mm, pgdp, addr);
1465
if (!p4dp)
1466
return SCAN_FAIL;
1467
pudp = pud_alloc(mm, p4dp, addr);
1468
if (!pudp)
1469
return SCAN_FAIL;
1470
pmdp = pmd_alloc(mm, pudp, addr);
1471
if (!pmdp)
1472
return SCAN_FAIL;
1473
}
1474
1475
vmf.pmd = pmdp;
1476
if (do_set_pmd(&vmf, folio, page))
1477
return SCAN_FAIL;
1478
1479
folio_get(folio);
1480
return SCAN_SUCCEED;
1481
}
1482
1483
/**
1484
* collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1485
* address haddr.
1486
*
1487
* @mm: process address space where collapse happens
1488
* @addr: THP collapse address
1489
* @install_pmd: If a huge PMD should be installed
1490
*
1491
* This function checks whether all the PTEs in the PMD are pointing to the
1492
* right THP. If so, retract the page table so the THP can refault in with
1493
* as pmd-mapped. Possibly install a huge PMD mapping the THP.
1494
*/
1495
int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1496
bool install_pmd)
1497
{
1498
int nr_mapped_ptes = 0, result = SCAN_FAIL;
1499
unsigned int nr_batch_ptes;
1500
struct mmu_notifier_range range;
1501
bool notified = false;
1502
unsigned long haddr = addr & HPAGE_PMD_MASK;
1503
unsigned long end = haddr + HPAGE_PMD_SIZE;
1504
struct vm_area_struct *vma = vma_lookup(mm, haddr);
1505
struct folio *folio;
1506
pte_t *start_pte, *pte;
1507
pmd_t *pmd, pgt_pmd;
1508
spinlock_t *pml = NULL, *ptl;
1509
int i;
1510
1511
mmap_assert_locked(mm);
1512
1513
/* First check VMA found, in case page tables are being torn down */
1514
if (!vma || !vma->vm_file ||
1515
!range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1516
return SCAN_VMA_CHECK;
1517
1518
/* Fast check before locking page if already PMD-mapped */
1519
result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1520
if (result == SCAN_PMD_MAPPED)
1521
return result;
1522
1523
/*
1524
* If we are here, we've succeeded in replacing all the native pages
1525
* in the page cache with a single hugepage. If a mm were to fault-in
1526
* this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1527
* and map it by a PMD, regardless of sysfs THP settings. As such, let's
1528
* analogously elide sysfs THP settings here and force collapse.
1529
*/
1530
if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER))
1531
return SCAN_VMA_CHECK;
1532
1533
/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1534
if (userfaultfd_wp(vma))
1535
return SCAN_PTE_UFFD_WP;
1536
1537
folio = filemap_lock_folio(vma->vm_file->f_mapping,
1538
linear_page_index(vma, haddr));
1539
if (IS_ERR(folio))
1540
return SCAN_PAGE_NULL;
1541
1542
if (folio_order(folio) != HPAGE_PMD_ORDER) {
1543
result = SCAN_PAGE_COMPOUND;
1544
goto drop_folio;
1545
}
1546
1547
result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1548
switch (result) {
1549
case SCAN_SUCCEED:
1550
break;
1551
case SCAN_PMD_NULL:
1552
case SCAN_PMD_NONE:
1553
/*
1554
* All pte entries have been removed and pmd cleared.
1555
* Skip all the pte checks and just update the pmd mapping.
1556
*/
1557
goto maybe_install_pmd;
1558
default:
1559
goto drop_folio;
1560
}
1561
1562
result = SCAN_FAIL;
1563
start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1564
if (!start_pte) /* mmap_lock + page lock should prevent this */
1565
goto drop_folio;
1566
1567
/* step 1: check all mapped PTEs are to the right huge page */
1568
for (i = 0, addr = haddr, pte = start_pte;
1569
i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1570
struct page *page;
1571
pte_t ptent = ptep_get(pte);
1572
1573
/* empty pte, skip */
1574
if (pte_none(ptent))
1575
continue;
1576
1577
/* page swapped out, abort */
1578
if (!pte_present(ptent)) {
1579
result = SCAN_PTE_NON_PRESENT;
1580
goto abort;
1581
}
1582
1583
page = vm_normal_page(vma, addr, ptent);
1584
if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1585
page = NULL;
1586
/*
1587
* Note that uprobe, debugger, or MAP_PRIVATE may change the
1588
* page table, but the new page will not be a subpage of hpage.
1589
*/
1590
if (folio_page(folio, i) != page)
1591
goto abort;
1592
}
1593
1594
pte_unmap_unlock(start_pte, ptl);
1595
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1596
haddr, haddr + HPAGE_PMD_SIZE);
1597
mmu_notifier_invalidate_range_start(&range);
1598
notified = true;
1599
1600
/*
1601
* pmd_lock covers a wider range than ptl, and (if split from mm's
1602
* page_table_lock) ptl nests inside pml. The less time we hold pml,
1603
* the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1604
* inserts a valid as-if-COWed PTE without even looking up page cache.
1605
* So page lock of folio does not protect from it, so we must not drop
1606
* ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1607
*/
1608
if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1609
pml = pmd_lock(mm, pmd);
1610
1611
start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl);
1612
if (!start_pte) /* mmap_lock + page lock should prevent this */
1613
goto abort;
1614
if (!pml)
1615
spin_lock(ptl);
1616
else if (ptl != pml)
1617
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1618
1619
if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd))))
1620
goto abort;
1621
1622
/* step 2: clear page table and adjust rmap */
1623
for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR;
1624
i += nr_batch_ptes, addr += nr_batch_ptes * PAGE_SIZE,
1625
pte += nr_batch_ptes) {
1626
unsigned int max_nr_batch_ptes = (end - addr) >> PAGE_SHIFT;
1627
struct page *page;
1628
pte_t ptent = ptep_get(pte);
1629
1630
nr_batch_ptes = 1;
1631
1632
if (pte_none(ptent))
1633
continue;
1634
/*
1635
* We dropped ptl after the first scan, to do the mmu_notifier:
1636
* page lock stops more PTEs of the folio being faulted in, but
1637
* does not stop write faults COWing anon copies from existing
1638
* PTEs; and does not stop those being swapped out or migrated.
1639
*/
1640
if (!pte_present(ptent)) {
1641
result = SCAN_PTE_NON_PRESENT;
1642
goto abort;
1643
}
1644
page = vm_normal_page(vma, addr, ptent);
1645
1646
if (folio_page(folio, i) != page)
1647
goto abort;
1648
1649
nr_batch_ptes = folio_pte_batch(folio, pte, ptent, max_nr_batch_ptes);
1650
1651
/*
1652
* Must clear entry, or a racing truncate may re-remove it.
1653
* TLB flush can be left until pmdp_collapse_flush() does it.
1654
* PTE dirty? Shmem page is already dirty; file is read-only.
1655
*/
1656
clear_ptes(mm, addr, pte, nr_batch_ptes);
1657
folio_remove_rmap_ptes(folio, page, nr_batch_ptes, vma);
1658
nr_mapped_ptes += nr_batch_ptes;
1659
}
1660
1661
if (!pml)
1662
spin_unlock(ptl);
1663
1664
/* step 3: set proper refcount and mm_counters. */
1665
if (nr_mapped_ptes) {
1666
folio_ref_sub(folio, nr_mapped_ptes);
1667
add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1668
}
1669
1670
/* step 4: remove empty page table */
1671
if (!pml) {
1672
pml = pmd_lock(mm, pmd);
1673
if (ptl != pml) {
1674
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1675
if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) {
1676
flush_tlb_mm(mm);
1677
goto unlock;
1678
}
1679
}
1680
}
1681
pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1682
pmdp_get_lockless_sync();
1683
pte_unmap_unlock(start_pte, ptl);
1684
if (ptl != pml)
1685
spin_unlock(pml);
1686
1687
mmu_notifier_invalidate_range_end(&range);
1688
1689
mm_dec_nr_ptes(mm);
1690
page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1691
pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1692
1693
maybe_install_pmd:
1694
/* step 5: install pmd entry */
1695
result = install_pmd
1696
? set_huge_pmd(vma, haddr, pmd, folio, &folio->page)
1697
: SCAN_SUCCEED;
1698
goto drop_folio;
1699
abort:
1700
if (nr_mapped_ptes) {
1701
flush_tlb_mm(mm);
1702
folio_ref_sub(folio, nr_mapped_ptes);
1703
add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1704
}
1705
unlock:
1706
if (start_pte)
1707
pte_unmap_unlock(start_pte, ptl);
1708
if (pml && pml != ptl)
1709
spin_unlock(pml);
1710
if (notified)
1711
mmu_notifier_invalidate_range_end(&range);
1712
drop_folio:
1713
folio_unlock(folio);
1714
folio_put(folio);
1715
return result;
1716
}
1717
1718
static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1719
{
1720
struct vm_area_struct *vma;
1721
1722
i_mmap_lock_read(mapping);
1723
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1724
struct mmu_notifier_range range;
1725
struct mm_struct *mm;
1726
unsigned long addr;
1727
pmd_t *pmd, pgt_pmd;
1728
spinlock_t *pml;
1729
spinlock_t *ptl;
1730
bool success = false;
1731
1732
/*
1733
* Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1734
* got written to. These VMAs are likely not worth removing
1735
* page tables from, as PMD-mapping is likely to be split later.
1736
*/
1737
if (READ_ONCE(vma->anon_vma))
1738
continue;
1739
1740
addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1741
if (addr & ~HPAGE_PMD_MASK ||
1742
vma->vm_end < addr + HPAGE_PMD_SIZE)
1743
continue;
1744
1745
mm = vma->vm_mm;
1746
if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1747
continue;
1748
1749
if (hpage_collapse_test_exit(mm))
1750
continue;
1751
/*
1752
* When a vma is registered with uffd-wp, we cannot recycle
1753
* the page table because there may be pte markers installed.
1754
* Other vmas can still have the same file mapped hugely, but
1755
* skip this one: it will always be mapped in small page size
1756
* for uffd-wp registered ranges.
1757
*/
1758
if (userfaultfd_wp(vma))
1759
continue;
1760
1761
/* PTEs were notified when unmapped; but now for the PMD? */
1762
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1763
addr, addr + HPAGE_PMD_SIZE);
1764
mmu_notifier_invalidate_range_start(&range);
1765
1766
pml = pmd_lock(mm, pmd);
1767
/*
1768
* The lock of new_folio is still held, we will be blocked in
1769
* the page fault path, which prevents the pte entries from
1770
* being set again. So even though the old empty PTE page may be
1771
* concurrently freed and a new PTE page is filled into the pmd
1772
* entry, it is still empty and can be removed.
1773
*
1774
* So here we only need to recheck if the state of pmd entry
1775
* still meets our requirements, rather than checking pmd_same()
1776
* like elsewhere.
1777
*/
1778
if (check_pmd_state(pmd) != SCAN_SUCCEED)
1779
goto drop_pml;
1780
ptl = pte_lockptr(mm, pmd);
1781
if (ptl != pml)
1782
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1783
1784
/*
1785
* Huge page lock is still held, so normally the page table
1786
* must remain empty; and we have already skipped anon_vma
1787
* and userfaultfd_wp() vmas. But since the mmap_lock is not
1788
* held, it is still possible for a racing userfaultfd_ioctl()
1789
* to have inserted ptes or markers. Now that we hold ptlock,
1790
* repeating the anon_vma check protects from one category,
1791
* and repeating the userfaultfd_wp() check from another.
1792
*/
1793
if (likely(!vma->anon_vma && !userfaultfd_wp(vma))) {
1794
pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1795
pmdp_get_lockless_sync();
1796
success = true;
1797
}
1798
1799
if (ptl != pml)
1800
spin_unlock(ptl);
1801
drop_pml:
1802
spin_unlock(pml);
1803
1804
mmu_notifier_invalidate_range_end(&range);
1805
1806
if (success) {
1807
mm_dec_nr_ptes(mm);
1808
page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1809
pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1810
}
1811
}
1812
i_mmap_unlock_read(mapping);
1813
}
1814
1815
/**
1816
* collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1817
*
1818
* @mm: process address space where collapse happens
1819
* @addr: virtual collapse start address
1820
* @file: file that collapse on
1821
* @start: collapse start address
1822
* @cc: collapse context and scratchpad
1823
*
1824
* Basic scheme is simple, details are more complex:
1825
* - allocate and lock a new huge page;
1826
* - scan page cache, locking old pages
1827
* + swap/gup in pages if necessary;
1828
* - copy data to new page
1829
* - handle shmem holes
1830
* + re-validate that holes weren't filled by someone else
1831
* + check for userfaultfd
1832
* - finalize updates to the page cache;
1833
* - if replacing succeeds:
1834
* + unlock huge page;
1835
* + free old pages;
1836
* - if replacing failed;
1837
* + unlock old pages
1838
* + unlock and free huge page;
1839
*/
1840
static int collapse_file(struct mm_struct *mm, unsigned long addr,
1841
struct file *file, pgoff_t start,
1842
struct collapse_control *cc)
1843
{
1844
struct address_space *mapping = file->f_mapping;
1845
struct page *dst;
1846
struct folio *folio, *tmp, *new_folio;
1847
pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1848
LIST_HEAD(pagelist);
1849
XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1850
int nr_none = 0, result = SCAN_SUCCEED;
1851
bool is_shmem = shmem_file(file);
1852
1853
VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1854
VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1855
1856
result = alloc_charge_folio(&new_folio, mm, cc);
1857
if (result != SCAN_SUCCEED)
1858
goto out;
1859
1860
mapping_set_update(&xas, mapping);
1861
1862
__folio_set_locked(new_folio);
1863
if (is_shmem)
1864
__folio_set_swapbacked(new_folio);
1865
new_folio->index = start;
1866
new_folio->mapping = mapping;
1867
1868
/*
1869
* Ensure we have slots for all the pages in the range. This is
1870
* almost certainly a no-op because most of the pages must be present
1871
*/
1872
do {
1873
xas_lock_irq(&xas);
1874
xas_create_range(&xas);
1875
if (!xas_error(&xas))
1876
break;
1877
xas_unlock_irq(&xas);
1878
if (!xas_nomem(&xas, GFP_KERNEL)) {
1879
result = SCAN_FAIL;
1880
goto rollback;
1881
}
1882
} while (1);
1883
1884
for (index = start; index < end;) {
1885
xas_set(&xas, index);
1886
folio = xas_load(&xas);
1887
1888
VM_BUG_ON(index != xas.xa_index);
1889
if (is_shmem) {
1890
if (!folio) {
1891
/*
1892
* Stop if extent has been truncated or
1893
* hole-punched, and is now completely
1894
* empty.
1895
*/
1896
if (index == start) {
1897
if (!xas_next_entry(&xas, end - 1)) {
1898
result = SCAN_TRUNCATED;
1899
goto xa_locked;
1900
}
1901
}
1902
nr_none++;
1903
index++;
1904
continue;
1905
}
1906
1907
if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1908
xas_unlock_irq(&xas);
1909
/* swap in or instantiate fallocated page */
1910
if (shmem_get_folio(mapping->host, index, 0,
1911
&folio, SGP_NOALLOC)) {
1912
result = SCAN_FAIL;
1913
goto xa_unlocked;
1914
}
1915
/* drain lru cache to help folio_isolate_lru() */
1916
lru_add_drain();
1917
} else if (folio_trylock(folio)) {
1918
folio_get(folio);
1919
xas_unlock_irq(&xas);
1920
} else {
1921
result = SCAN_PAGE_LOCK;
1922
goto xa_locked;
1923
}
1924
} else { /* !is_shmem */
1925
if (!folio || xa_is_value(folio)) {
1926
xas_unlock_irq(&xas);
1927
page_cache_sync_readahead(mapping, &file->f_ra,
1928
file, index,
1929
end - index);
1930
/* drain lru cache to help folio_isolate_lru() */
1931
lru_add_drain();
1932
folio = filemap_lock_folio(mapping, index);
1933
if (IS_ERR(folio)) {
1934
result = SCAN_FAIL;
1935
goto xa_unlocked;
1936
}
1937
} else if (folio_test_dirty(folio)) {
1938
/*
1939
* khugepaged only works on read-only fd,
1940
* so this page is dirty because it hasn't
1941
* been flushed since first write. There
1942
* won't be new dirty pages.
1943
*
1944
* Trigger async flush here and hope the
1945
* writeback is done when khugepaged
1946
* revisits this page.
1947
*
1948
* This is a one-off situation. We are not
1949
* forcing writeback in loop.
1950
*/
1951
xas_unlock_irq(&xas);
1952
filemap_flush(mapping);
1953
result = SCAN_FAIL;
1954
goto xa_unlocked;
1955
} else if (folio_test_writeback(folio)) {
1956
xas_unlock_irq(&xas);
1957
result = SCAN_FAIL;
1958
goto xa_unlocked;
1959
} else if (folio_trylock(folio)) {
1960
folio_get(folio);
1961
xas_unlock_irq(&xas);
1962
} else {
1963
result = SCAN_PAGE_LOCK;
1964
goto xa_locked;
1965
}
1966
}
1967
1968
/*
1969
* The folio must be locked, so we can drop the i_pages lock
1970
* without racing with truncate.
1971
*/
1972
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1973
1974
/* make sure the folio is up to date */
1975
if (unlikely(!folio_test_uptodate(folio))) {
1976
result = SCAN_FAIL;
1977
goto out_unlock;
1978
}
1979
1980
/*
1981
* If file was truncated then extended, or hole-punched, before
1982
* we locked the first folio, then a THP might be there already.
1983
* This will be discovered on the first iteration.
1984
*/
1985
if (folio_order(folio) == HPAGE_PMD_ORDER &&
1986
folio->index == start) {
1987
/* Maybe PMD-mapped */
1988
result = SCAN_PTE_MAPPED_HUGEPAGE;
1989
goto out_unlock;
1990
}
1991
1992
if (folio_mapping(folio) != mapping) {
1993
result = SCAN_TRUNCATED;
1994
goto out_unlock;
1995
}
1996
1997
if (!is_shmem && (folio_test_dirty(folio) ||
1998
folio_test_writeback(folio))) {
1999
/*
2000
* khugepaged only works on read-only fd, so this
2001
* folio is dirty because it hasn't been flushed
2002
* since first write.
2003
*/
2004
result = SCAN_FAIL;
2005
goto out_unlock;
2006
}
2007
2008
if (!folio_isolate_lru(folio)) {
2009
result = SCAN_DEL_PAGE_LRU;
2010
goto out_unlock;
2011
}
2012
2013
if (!filemap_release_folio(folio, GFP_KERNEL)) {
2014
result = SCAN_PAGE_HAS_PRIVATE;
2015
folio_putback_lru(folio);
2016
goto out_unlock;
2017
}
2018
2019
if (folio_mapped(folio))
2020
try_to_unmap(folio,
2021
TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
2022
2023
xas_lock_irq(&xas);
2024
2025
VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
2026
2027
/*
2028
* We control 2 + nr_pages references to the folio:
2029
* - we hold a pin on it;
2030
* - nr_pages reference from page cache;
2031
* - one from lru_isolate_folio;
2032
* If those are the only references, then any new usage
2033
* of the folio will have to fetch it from the page
2034
* cache. That requires locking the folio to handle
2035
* truncate, so any new usage will be blocked until we
2036
* unlock folio after collapse/during rollback.
2037
*/
2038
if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) {
2039
result = SCAN_PAGE_COUNT;
2040
xas_unlock_irq(&xas);
2041
folio_putback_lru(folio);
2042
goto out_unlock;
2043
}
2044
2045
/*
2046
* Accumulate the folios that are being collapsed.
2047
*/
2048
list_add_tail(&folio->lru, &pagelist);
2049
index += folio_nr_pages(folio);
2050
continue;
2051
out_unlock:
2052
folio_unlock(folio);
2053
folio_put(folio);
2054
goto xa_unlocked;
2055
}
2056
2057
if (!is_shmem) {
2058
filemap_nr_thps_inc(mapping);
2059
/*
2060
* Paired with the fence in do_dentry_open() -> get_write_access()
2061
* to ensure i_writecount is up to date and the update to nr_thps
2062
* is visible. Ensures the page cache will be truncated if the
2063
* file is opened writable.
2064
*/
2065
smp_mb();
2066
if (inode_is_open_for_write(mapping->host)) {
2067
result = SCAN_FAIL;
2068
filemap_nr_thps_dec(mapping);
2069
}
2070
}
2071
2072
xa_locked:
2073
xas_unlock_irq(&xas);
2074
xa_unlocked:
2075
2076
/*
2077
* If collapse is successful, flush must be done now before copying.
2078
* If collapse is unsuccessful, does flush actually need to be done?
2079
* Do it anyway, to clear the state.
2080
*/
2081
try_to_unmap_flush();
2082
2083
if (result == SCAN_SUCCEED && nr_none &&
2084
!shmem_charge(mapping->host, nr_none))
2085
result = SCAN_FAIL;
2086
if (result != SCAN_SUCCEED) {
2087
nr_none = 0;
2088
goto rollback;
2089
}
2090
2091
/*
2092
* The old folios are locked, so they won't change anymore.
2093
*/
2094
index = start;
2095
dst = folio_page(new_folio, 0);
2096
list_for_each_entry(folio, &pagelist, lru) {
2097
int i, nr_pages = folio_nr_pages(folio);
2098
2099
while (index < folio->index) {
2100
clear_highpage(dst);
2101
index++;
2102
dst++;
2103
}
2104
2105
for (i = 0; i < nr_pages; i++) {
2106
if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) {
2107
result = SCAN_COPY_MC;
2108
goto rollback;
2109
}
2110
index++;
2111
dst++;
2112
}
2113
}
2114
while (index < end) {
2115
clear_highpage(dst);
2116
index++;
2117
dst++;
2118
}
2119
2120
if (nr_none) {
2121
struct vm_area_struct *vma;
2122
int nr_none_check = 0;
2123
2124
i_mmap_lock_read(mapping);
2125
xas_lock_irq(&xas);
2126
2127
xas_set(&xas, start);
2128
for (index = start; index < end; index++) {
2129
if (!xas_next(&xas)) {
2130
xas_store(&xas, XA_RETRY_ENTRY);
2131
if (xas_error(&xas)) {
2132
result = SCAN_STORE_FAILED;
2133
goto immap_locked;
2134
}
2135
nr_none_check++;
2136
}
2137
}
2138
2139
if (nr_none != nr_none_check) {
2140
result = SCAN_PAGE_FILLED;
2141
goto immap_locked;
2142
}
2143
2144
/*
2145
* If userspace observed a missing page in a VMA with
2146
* a MODE_MISSING userfaultfd, then it might expect a
2147
* UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2148
* roll back to avoid suppressing such an event. Since
2149
* wp/minor userfaultfds don't give userspace any
2150
* guarantees that the kernel doesn't fill a missing
2151
* page with a zero page, so they don't matter here.
2152
*
2153
* Any userfaultfds registered after this point will
2154
* not be able to observe any missing pages due to the
2155
* previously inserted retry entries.
2156
*/
2157
vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2158
if (userfaultfd_missing(vma)) {
2159
result = SCAN_EXCEED_NONE_PTE;
2160
goto immap_locked;
2161
}
2162
}
2163
2164
immap_locked:
2165
i_mmap_unlock_read(mapping);
2166
if (result != SCAN_SUCCEED) {
2167
xas_set(&xas, start);
2168
for (index = start; index < end; index++) {
2169
if (xas_next(&xas) == XA_RETRY_ENTRY)
2170
xas_store(&xas, NULL);
2171
}
2172
2173
xas_unlock_irq(&xas);
2174
goto rollback;
2175
}
2176
} else {
2177
xas_lock_irq(&xas);
2178
}
2179
2180
if (is_shmem)
2181
__lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2182
else
2183
__lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2184
2185
if (nr_none) {
2186
__lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2187
/* nr_none is always 0 for non-shmem. */
2188
__lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2189
}
2190
2191
/*
2192
* Mark new_folio as uptodate before inserting it into the
2193
* page cache so that it isn't mistaken for an fallocated but
2194
* unwritten page.
2195
*/
2196
folio_mark_uptodate(new_folio);
2197
folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2198
2199
if (is_shmem)
2200
folio_mark_dirty(new_folio);
2201
folio_add_lru(new_folio);
2202
2203
/* Join all the small entries into a single multi-index entry. */
2204
xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2205
xas_store(&xas, new_folio);
2206
WARN_ON_ONCE(xas_error(&xas));
2207
xas_unlock_irq(&xas);
2208
2209
/*
2210
* Remove pte page tables, so we can re-fault the page as huge.
2211
* If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2212
*/
2213
retract_page_tables(mapping, start);
2214
if (cc && !cc->is_khugepaged)
2215
result = SCAN_PTE_MAPPED_HUGEPAGE;
2216
folio_unlock(new_folio);
2217
2218
/*
2219
* The collapse has succeeded, so free the old folios.
2220
*/
2221
list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2222
list_del(&folio->lru);
2223
folio->mapping = NULL;
2224
folio_clear_active(folio);
2225
folio_clear_unevictable(folio);
2226
folio_unlock(folio);
2227
folio_put_refs(folio, 2 + folio_nr_pages(folio));
2228
}
2229
2230
goto out;
2231
2232
rollback:
2233
/* Something went wrong: roll back page cache changes */
2234
if (nr_none) {
2235
xas_lock_irq(&xas);
2236
mapping->nrpages -= nr_none;
2237
xas_unlock_irq(&xas);
2238
shmem_uncharge(mapping->host, nr_none);
2239
}
2240
2241
list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2242
list_del(&folio->lru);
2243
folio_unlock(folio);
2244
folio_putback_lru(folio);
2245
folio_put(folio);
2246
}
2247
/*
2248
* Undo the updates of filemap_nr_thps_inc for non-SHMEM
2249
* file only. This undo is not needed unless failure is
2250
* due to SCAN_COPY_MC.
2251
*/
2252
if (!is_shmem && result == SCAN_COPY_MC) {
2253
filemap_nr_thps_dec(mapping);
2254
/*
2255
* Paired with the fence in do_dentry_open() -> get_write_access()
2256
* to ensure the update to nr_thps is visible.
2257
*/
2258
smp_mb();
2259
}
2260
2261
new_folio->mapping = NULL;
2262
2263
folio_unlock(new_folio);
2264
folio_put(new_folio);
2265
out:
2266
VM_BUG_ON(!list_empty(&pagelist));
2267
trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result);
2268
return result;
2269
}
2270
2271
static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2272
struct file *file, pgoff_t start,
2273
struct collapse_control *cc)
2274
{
2275
struct folio *folio = NULL;
2276
struct address_space *mapping = file->f_mapping;
2277
XA_STATE(xas, &mapping->i_pages, start);
2278
int present, swap;
2279
int node = NUMA_NO_NODE;
2280
int result = SCAN_SUCCEED;
2281
2282
present = 0;
2283
swap = 0;
2284
memset(cc->node_load, 0, sizeof(cc->node_load));
2285
nodes_clear(cc->alloc_nmask);
2286
rcu_read_lock();
2287
xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2288
if (xas_retry(&xas, folio))
2289
continue;
2290
2291
if (xa_is_value(folio)) {
2292
swap += 1 << xas_get_order(&xas);
2293
if (cc->is_khugepaged &&
2294
swap > khugepaged_max_ptes_swap) {
2295
result = SCAN_EXCEED_SWAP_PTE;
2296
count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2297
break;
2298
}
2299
continue;
2300
}
2301
2302
if (!folio_try_get(folio)) {
2303
xas_reset(&xas);
2304
continue;
2305
}
2306
2307
if (unlikely(folio != xas_reload(&xas))) {
2308
folio_put(folio);
2309
xas_reset(&xas);
2310
continue;
2311
}
2312
2313
if (folio_order(folio) == HPAGE_PMD_ORDER &&
2314
folio->index == start) {
2315
/* Maybe PMD-mapped */
2316
result = SCAN_PTE_MAPPED_HUGEPAGE;
2317
/*
2318
* For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2319
* by the caller won't touch the page cache, and so
2320
* it's safe to skip LRU and refcount checks before
2321
* returning.
2322
*/
2323
folio_put(folio);
2324
break;
2325
}
2326
2327
node = folio_nid(folio);
2328
if (hpage_collapse_scan_abort(node, cc)) {
2329
result = SCAN_SCAN_ABORT;
2330
folio_put(folio);
2331
break;
2332
}
2333
cc->node_load[node]++;
2334
2335
if (!folio_test_lru(folio)) {
2336
result = SCAN_PAGE_LRU;
2337
folio_put(folio);
2338
break;
2339
}
2340
2341
if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) {
2342
result = SCAN_PAGE_COUNT;
2343
folio_put(folio);
2344
break;
2345
}
2346
2347
/*
2348
* We probably should check if the folio is referenced
2349
* here, but nobody would transfer pte_young() to
2350
* folio_test_referenced() for us. And rmap walk here
2351
* is just too costly...
2352
*/
2353
2354
present += folio_nr_pages(folio);
2355
folio_put(folio);
2356
2357
if (need_resched()) {
2358
xas_pause(&xas);
2359
cond_resched_rcu();
2360
}
2361
}
2362
rcu_read_unlock();
2363
2364
if (result == SCAN_SUCCEED) {
2365
if (cc->is_khugepaged &&
2366
present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2367
result = SCAN_EXCEED_NONE_PTE;
2368
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2369
} else {
2370
result = collapse_file(mm, addr, file, start, cc);
2371
}
2372
}
2373
2374
trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2375
return result;
2376
}
2377
2378
static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2379
struct collapse_control *cc)
2380
__releases(&khugepaged_mm_lock)
2381
__acquires(&khugepaged_mm_lock)
2382
{
2383
struct vma_iterator vmi;
2384
struct mm_slot *slot;
2385
struct mm_struct *mm;
2386
struct vm_area_struct *vma;
2387
int progress = 0;
2388
2389
VM_BUG_ON(!pages);
2390
lockdep_assert_held(&khugepaged_mm_lock);
2391
*result = SCAN_FAIL;
2392
2393
if (khugepaged_scan.mm_slot) {
2394
slot = khugepaged_scan.mm_slot;
2395
} else {
2396
slot = list_first_entry(&khugepaged_scan.mm_head,
2397
struct mm_slot, mm_node);
2398
khugepaged_scan.address = 0;
2399
khugepaged_scan.mm_slot = slot;
2400
}
2401
spin_unlock(&khugepaged_mm_lock);
2402
2403
mm = slot->mm;
2404
/*
2405
* Don't wait for semaphore (to avoid long wait times). Just move to
2406
* the next mm on the list.
2407
*/
2408
vma = NULL;
2409
if (unlikely(!mmap_read_trylock(mm)))
2410
goto breakouterloop_mmap_lock;
2411
2412
progress++;
2413
if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2414
goto breakouterloop;
2415
2416
vma_iter_init(&vmi, mm, khugepaged_scan.address);
2417
for_each_vma(vmi, vma) {
2418
unsigned long hstart, hend;
2419
2420
cond_resched();
2421
if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2422
progress++;
2423
break;
2424
}
2425
if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) {
2426
skip:
2427
progress++;
2428
continue;
2429
}
2430
hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2431
hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2432
if (khugepaged_scan.address > hend)
2433
goto skip;
2434
if (khugepaged_scan.address < hstart)
2435
khugepaged_scan.address = hstart;
2436
VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2437
2438
while (khugepaged_scan.address < hend) {
2439
bool mmap_locked = true;
2440
2441
cond_resched();
2442
if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2443
goto breakouterloop;
2444
2445
VM_BUG_ON(khugepaged_scan.address < hstart ||
2446
khugepaged_scan.address + HPAGE_PMD_SIZE >
2447
hend);
2448
if (!vma_is_anonymous(vma)) {
2449
struct file *file = get_file(vma->vm_file);
2450
pgoff_t pgoff = linear_page_index(vma,
2451
khugepaged_scan.address);
2452
2453
mmap_read_unlock(mm);
2454
mmap_locked = false;
2455
*result = hpage_collapse_scan_file(mm,
2456
khugepaged_scan.address, file, pgoff, cc);
2457
fput(file);
2458
if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2459
mmap_read_lock(mm);
2460
if (hpage_collapse_test_exit_or_disable(mm))
2461
goto breakouterloop;
2462
*result = collapse_pte_mapped_thp(mm,
2463
khugepaged_scan.address, false);
2464
if (*result == SCAN_PMD_MAPPED)
2465
*result = SCAN_SUCCEED;
2466
mmap_read_unlock(mm);
2467
}
2468
} else {
2469
*result = hpage_collapse_scan_pmd(mm, vma,
2470
khugepaged_scan.address, &mmap_locked, cc);
2471
}
2472
2473
if (*result == SCAN_SUCCEED)
2474
++khugepaged_pages_collapsed;
2475
2476
/* move to next address */
2477
khugepaged_scan.address += HPAGE_PMD_SIZE;
2478
progress += HPAGE_PMD_NR;
2479
if (!mmap_locked)
2480
/*
2481
* We released mmap_lock so break loop. Note
2482
* that we drop mmap_lock before all hugepage
2483
* allocations, so if allocation fails, we are
2484
* guaranteed to break here and report the
2485
* correct result back to caller.
2486
*/
2487
goto breakouterloop_mmap_lock;
2488
if (progress >= pages)
2489
goto breakouterloop;
2490
}
2491
}
2492
breakouterloop:
2493
mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2494
breakouterloop_mmap_lock:
2495
2496
spin_lock(&khugepaged_mm_lock);
2497
VM_BUG_ON(khugepaged_scan.mm_slot != slot);
2498
/*
2499
* Release the current mm_slot if this mm is about to die, or
2500
* if we scanned all vmas of this mm.
2501
*/
2502
if (hpage_collapse_test_exit(mm) || !vma) {
2503
/*
2504
* Make sure that if mm_users is reaching zero while
2505
* khugepaged runs here, khugepaged_exit will find
2506
* mm_slot not pointing to the exiting mm.
2507
*/
2508
if (!list_is_last(&slot->mm_node, &khugepaged_scan.mm_head)) {
2509
khugepaged_scan.mm_slot = list_next_entry(slot, mm_node);
2510
khugepaged_scan.address = 0;
2511
} else {
2512
khugepaged_scan.mm_slot = NULL;
2513
khugepaged_full_scans++;
2514
}
2515
2516
collect_mm_slot(slot);
2517
}
2518
2519
return progress;
2520
}
2521
2522
static int khugepaged_has_work(void)
2523
{
2524
return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled();
2525
}
2526
2527
static int khugepaged_wait_event(void)
2528
{
2529
return !list_empty(&khugepaged_scan.mm_head) ||
2530
kthread_should_stop();
2531
}
2532
2533
static void khugepaged_do_scan(struct collapse_control *cc)
2534
{
2535
unsigned int progress = 0, pass_through_head = 0;
2536
unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2537
bool wait = true;
2538
int result = SCAN_SUCCEED;
2539
2540
lru_add_drain_all();
2541
2542
while (true) {
2543
cond_resched();
2544
2545
if (unlikely(kthread_should_stop()))
2546
break;
2547
2548
spin_lock(&khugepaged_mm_lock);
2549
if (!khugepaged_scan.mm_slot)
2550
pass_through_head++;
2551
if (khugepaged_has_work() &&
2552
pass_through_head < 2)
2553
progress += khugepaged_scan_mm_slot(pages - progress,
2554
&result, cc);
2555
else
2556
progress = pages;
2557
spin_unlock(&khugepaged_mm_lock);
2558
2559
if (progress >= pages)
2560
break;
2561
2562
if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2563
/*
2564
* If fail to allocate the first time, try to sleep for
2565
* a while. When hit again, cancel the scan.
2566
*/
2567
if (!wait)
2568
break;
2569
wait = false;
2570
khugepaged_alloc_sleep();
2571
}
2572
}
2573
}
2574
2575
static bool khugepaged_should_wakeup(void)
2576
{
2577
return kthread_should_stop() ||
2578
time_after_eq(jiffies, khugepaged_sleep_expire);
2579
}
2580
2581
static void khugepaged_wait_work(void)
2582
{
2583
if (khugepaged_has_work()) {
2584
const unsigned long scan_sleep_jiffies =
2585
msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2586
2587
if (!scan_sleep_jiffies)
2588
return;
2589
2590
khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2591
wait_event_freezable_timeout(khugepaged_wait,
2592
khugepaged_should_wakeup(),
2593
scan_sleep_jiffies);
2594
return;
2595
}
2596
2597
if (hugepage_pmd_enabled())
2598
wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2599
}
2600
2601
static int khugepaged(void *none)
2602
{
2603
struct mm_slot *slot;
2604
2605
set_freezable();
2606
set_user_nice(current, MAX_NICE);
2607
2608
while (!kthread_should_stop()) {
2609
khugepaged_do_scan(&khugepaged_collapse_control);
2610
khugepaged_wait_work();
2611
}
2612
2613
spin_lock(&khugepaged_mm_lock);
2614
slot = khugepaged_scan.mm_slot;
2615
khugepaged_scan.mm_slot = NULL;
2616
if (slot)
2617
collect_mm_slot(slot);
2618
spin_unlock(&khugepaged_mm_lock);
2619
return 0;
2620
}
2621
2622
static void set_recommended_min_free_kbytes(void)
2623
{
2624
struct zone *zone;
2625
int nr_zones = 0;
2626
unsigned long recommended_min;
2627
2628
if (!hugepage_pmd_enabled()) {
2629
calculate_min_free_kbytes();
2630
goto update_wmarks;
2631
}
2632
2633
for_each_populated_zone(zone) {
2634
/*
2635
* We don't need to worry about fragmentation of
2636
* ZONE_MOVABLE since it only has movable pages.
2637
*/
2638
if (zone_idx(zone) > gfp_zone(GFP_USER))
2639
continue;
2640
2641
nr_zones++;
2642
}
2643
2644
/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2645
recommended_min = pageblock_nr_pages * nr_zones * 2;
2646
2647
/*
2648
* Make sure that on average at least two pageblocks are almost free
2649
* of another type, one for a migratetype to fall back to and a
2650
* second to avoid subsequent fallbacks of other types There are 3
2651
* MIGRATE_TYPES we care about.
2652
*/
2653
recommended_min += pageblock_nr_pages * nr_zones *
2654
MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2655
2656
/* don't ever allow to reserve more than 5% of the lowmem */
2657
recommended_min = min(recommended_min,
2658
(unsigned long) nr_free_buffer_pages() / 20);
2659
recommended_min <<= (PAGE_SHIFT-10);
2660
2661
if (recommended_min > min_free_kbytes) {
2662
if (user_min_free_kbytes >= 0)
2663
pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2664
min_free_kbytes, recommended_min);
2665
2666
min_free_kbytes = recommended_min;
2667
}
2668
2669
update_wmarks:
2670
setup_per_zone_wmarks();
2671
}
2672
2673
int start_stop_khugepaged(void)
2674
{
2675
int err = 0;
2676
2677
mutex_lock(&khugepaged_mutex);
2678
if (hugepage_pmd_enabled()) {
2679
if (!khugepaged_thread)
2680
khugepaged_thread = kthread_run(khugepaged, NULL,
2681
"khugepaged");
2682
if (IS_ERR(khugepaged_thread)) {
2683
pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2684
err = PTR_ERR(khugepaged_thread);
2685
khugepaged_thread = NULL;
2686
goto fail;
2687
}
2688
2689
if (!list_empty(&khugepaged_scan.mm_head))
2690
wake_up_interruptible(&khugepaged_wait);
2691
} else if (khugepaged_thread) {
2692
kthread_stop(khugepaged_thread);
2693
khugepaged_thread = NULL;
2694
}
2695
set_recommended_min_free_kbytes();
2696
fail:
2697
mutex_unlock(&khugepaged_mutex);
2698
return err;
2699
}
2700
2701
void khugepaged_min_free_kbytes_update(void)
2702
{
2703
mutex_lock(&khugepaged_mutex);
2704
if (hugepage_pmd_enabled() && khugepaged_thread)
2705
set_recommended_min_free_kbytes();
2706
mutex_unlock(&khugepaged_mutex);
2707
}
2708
2709
bool current_is_khugepaged(void)
2710
{
2711
return kthread_func(current) == khugepaged;
2712
}
2713
2714
static int madvise_collapse_errno(enum scan_result r)
2715
{
2716
/*
2717
* MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2718
* actionable feedback to caller, so they may take an appropriate
2719
* fallback measure depending on the nature of the failure.
2720
*/
2721
switch (r) {
2722
case SCAN_ALLOC_HUGE_PAGE_FAIL:
2723
return -ENOMEM;
2724
case SCAN_CGROUP_CHARGE_FAIL:
2725
case SCAN_EXCEED_NONE_PTE:
2726
return -EBUSY;
2727
/* Resource temporary unavailable - trying again might succeed */
2728
case SCAN_PAGE_COUNT:
2729
case SCAN_PAGE_LOCK:
2730
case SCAN_PAGE_LRU:
2731
case SCAN_DEL_PAGE_LRU:
2732
case SCAN_PAGE_FILLED:
2733
return -EAGAIN;
2734
/*
2735
* Other: Trying again likely not to succeed / error intrinsic to
2736
* specified memory range. khugepaged likely won't be able to collapse
2737
* either.
2738
*/
2739
default:
2740
return -EINVAL;
2741
}
2742
}
2743
2744
int madvise_collapse(struct vm_area_struct *vma, unsigned long start,
2745
unsigned long end, bool *lock_dropped)
2746
{
2747
struct collapse_control *cc;
2748
struct mm_struct *mm = vma->vm_mm;
2749
unsigned long hstart, hend, addr;
2750
int thps = 0, last_fail = SCAN_FAIL;
2751
bool mmap_locked = true;
2752
2753
BUG_ON(vma->vm_start > start);
2754
BUG_ON(vma->vm_end < end);
2755
2756
if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER))
2757
return -EINVAL;
2758
2759
cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2760
if (!cc)
2761
return -ENOMEM;
2762
cc->is_khugepaged = false;
2763
2764
mmgrab(mm);
2765
lru_add_drain_all();
2766
2767
hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2768
hend = end & HPAGE_PMD_MASK;
2769
2770
for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2771
int result = SCAN_FAIL;
2772
2773
if (!mmap_locked) {
2774
cond_resched();
2775
mmap_read_lock(mm);
2776
mmap_locked = true;
2777
result = hugepage_vma_revalidate(mm, addr, false, &vma,
2778
cc);
2779
if (result != SCAN_SUCCEED) {
2780
last_fail = result;
2781
goto out_nolock;
2782
}
2783
2784
hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2785
}
2786
mmap_assert_locked(mm);
2787
memset(cc->node_load, 0, sizeof(cc->node_load));
2788
nodes_clear(cc->alloc_nmask);
2789
if (!vma_is_anonymous(vma)) {
2790
struct file *file = get_file(vma->vm_file);
2791
pgoff_t pgoff = linear_page_index(vma, addr);
2792
2793
mmap_read_unlock(mm);
2794
mmap_locked = false;
2795
result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2796
cc);
2797
fput(file);
2798
} else {
2799
result = hpage_collapse_scan_pmd(mm, vma, addr,
2800
&mmap_locked, cc);
2801
}
2802
if (!mmap_locked)
2803
*lock_dropped = true;
2804
2805
handle_result:
2806
switch (result) {
2807
case SCAN_SUCCEED:
2808
case SCAN_PMD_MAPPED:
2809
++thps;
2810
break;
2811
case SCAN_PTE_MAPPED_HUGEPAGE:
2812
BUG_ON(mmap_locked);
2813
mmap_read_lock(mm);
2814
result = collapse_pte_mapped_thp(mm, addr, true);
2815
mmap_read_unlock(mm);
2816
goto handle_result;
2817
/* Whitelisted set of results where continuing OK */
2818
case SCAN_PMD_NULL:
2819
case SCAN_PTE_NON_PRESENT:
2820
case SCAN_PTE_UFFD_WP:
2821
case SCAN_LACK_REFERENCED_PAGE:
2822
case SCAN_PAGE_NULL:
2823
case SCAN_PAGE_COUNT:
2824
case SCAN_PAGE_LOCK:
2825
case SCAN_PAGE_COMPOUND:
2826
case SCAN_PAGE_LRU:
2827
case SCAN_DEL_PAGE_LRU:
2828
last_fail = result;
2829
break;
2830
default:
2831
last_fail = result;
2832
/* Other error, exit */
2833
goto out_maybelock;
2834
}
2835
}
2836
2837
out_maybelock:
2838
/* Caller expects us to hold mmap_lock on return */
2839
if (!mmap_locked)
2840
mmap_read_lock(mm);
2841
out_nolock:
2842
mmap_assert_locked(mm);
2843
mmdrop(mm);
2844
kfree(cc);
2845
2846
return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2847
: madvise_collapse_errno(last_fail);
2848
}
2849
2850