Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/rust/kernel/dma.rs
29509 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
//! Direct memory access (DMA).
4
//!
5
//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
6
7
use crate::{
8
bindings, build_assert, device,
9
device::{Bound, Core},
10
error::{to_result, Result},
11
prelude::*,
12
sync::aref::ARef,
13
transmute::{AsBytes, FromBytes},
14
};
15
16
/// DMA address type.
17
///
18
/// Represents a bus address used for Direct Memory Access (DMA) operations.
19
///
20
/// This is an alias of the kernel's `dma_addr_t`, which may be `u32` or `u64` depending on
21
/// `CONFIG_ARCH_DMA_ADDR_T_64BIT`.
22
///
23
/// Note that this may be `u64` even on 32-bit architectures.
24
pub type DmaAddress = bindings::dma_addr_t;
25
26
/// Trait to be implemented by DMA capable bus devices.
27
///
28
/// The [`dma::Device`](Device) trait should be implemented by bus specific device representations,
29
/// where the underlying bus is DMA capable, such as [`pci::Device`](::kernel::pci::Device) or
30
/// [`platform::Device`](::kernel::platform::Device).
31
pub trait Device: AsRef<device::Device<Core>> {
32
/// Set up the device's DMA streaming addressing capabilities.
33
///
34
/// This method is usually called once from `probe()` as soon as the device capabilities are
35
/// known.
36
///
37
/// # Safety
38
///
39
/// This method must not be called concurrently with any DMA allocation or mapping primitives,
40
/// such as [`CoherentAllocation::alloc_attrs`].
41
unsafe fn dma_set_mask(&self, mask: DmaMask) -> Result {
42
// SAFETY:
43
// - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
44
// - The safety requirement of this function guarantees that there are no concurrent calls
45
// to DMA allocation and mapping primitives using this mask.
46
to_result(unsafe { bindings::dma_set_mask(self.as_ref().as_raw(), mask.value()) })
47
}
48
49
/// Set up the device's DMA coherent addressing capabilities.
50
///
51
/// This method is usually called once from `probe()` as soon as the device capabilities are
52
/// known.
53
///
54
/// # Safety
55
///
56
/// This method must not be called concurrently with any DMA allocation or mapping primitives,
57
/// such as [`CoherentAllocation::alloc_attrs`].
58
unsafe fn dma_set_coherent_mask(&self, mask: DmaMask) -> Result {
59
// SAFETY:
60
// - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
61
// - The safety requirement of this function guarantees that there are no concurrent calls
62
// to DMA allocation and mapping primitives using this mask.
63
to_result(unsafe { bindings::dma_set_coherent_mask(self.as_ref().as_raw(), mask.value()) })
64
}
65
66
/// Set up the device's DMA addressing capabilities.
67
///
68
/// This is a combination of [`Device::dma_set_mask`] and [`Device::dma_set_coherent_mask`].
69
///
70
/// This method is usually called once from `probe()` as soon as the device capabilities are
71
/// known.
72
///
73
/// # Safety
74
///
75
/// This method must not be called concurrently with any DMA allocation or mapping primitives,
76
/// such as [`CoherentAllocation::alloc_attrs`].
77
unsafe fn dma_set_mask_and_coherent(&self, mask: DmaMask) -> Result {
78
// SAFETY:
79
// - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
80
// - The safety requirement of this function guarantees that there are no concurrent calls
81
// to DMA allocation and mapping primitives using this mask.
82
to_result(unsafe {
83
bindings::dma_set_mask_and_coherent(self.as_ref().as_raw(), mask.value())
84
})
85
}
86
}
87
88
/// A DMA mask that holds a bitmask with the lowest `n` bits set.
89
///
90
/// Use [`DmaMask::new`] or [`DmaMask::try_new`] to construct a value. Values
91
/// are guaranteed to never exceed the bit width of `u64`.
92
///
93
/// This is the Rust equivalent of the C macro `DMA_BIT_MASK()`.
94
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
95
pub struct DmaMask(u64);
96
97
impl DmaMask {
98
/// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
99
///
100
/// For `n <= 64`, sets exactly the lowest `n` bits.
101
/// For `n > 64`, results in a build error.
102
///
103
/// # Examples
104
///
105
/// ```
106
/// use kernel::dma::DmaMask;
107
///
108
/// let mask0 = DmaMask::new::<0>();
109
/// assert_eq!(mask0.value(), 0);
110
///
111
/// let mask1 = DmaMask::new::<1>();
112
/// assert_eq!(mask1.value(), 0b1);
113
///
114
/// let mask64 = DmaMask::new::<64>();
115
/// assert_eq!(mask64.value(), u64::MAX);
116
///
117
/// // Build failure.
118
/// // let mask_overflow = DmaMask::new::<100>();
119
/// ```
120
#[inline]
121
pub const fn new<const N: u32>() -> Self {
122
let Ok(mask) = Self::try_new(N) else {
123
build_error!("Invalid DMA Mask.");
124
};
125
126
mask
127
}
128
129
/// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
130
///
131
/// For `n <= 64`, sets exactly the lowest `n` bits.
132
/// For `n > 64`, returns [`EINVAL`].
133
///
134
/// # Examples
135
///
136
/// ```
137
/// use kernel::dma::DmaMask;
138
///
139
/// let mask0 = DmaMask::try_new(0)?;
140
/// assert_eq!(mask0.value(), 0);
141
///
142
/// let mask1 = DmaMask::try_new(1)?;
143
/// assert_eq!(mask1.value(), 0b1);
144
///
145
/// let mask64 = DmaMask::try_new(64)?;
146
/// assert_eq!(mask64.value(), u64::MAX);
147
///
148
/// let mask_overflow = DmaMask::try_new(100);
149
/// assert!(mask_overflow.is_err());
150
/// # Ok::<(), Error>(())
151
/// ```
152
#[inline]
153
pub const fn try_new(n: u32) -> Result<Self> {
154
Ok(Self(match n {
155
0 => 0,
156
1..=64 => u64::MAX >> (64 - n),
157
_ => return Err(EINVAL),
158
}))
159
}
160
161
/// Returns the underlying `u64` bitmask value.
162
#[inline]
163
pub const fn value(&self) -> u64 {
164
self.0
165
}
166
}
167
168
/// Possible attributes associated with a DMA mapping.
169
///
170
/// They can be combined with the operators `|`, `&`, and `!`.
171
///
172
/// Values can be used from the [`attrs`] module.
173
///
174
/// # Examples
175
///
176
/// ```
177
/// # use kernel::device::{Bound, Device};
178
/// use kernel::dma::{attrs::*, CoherentAllocation};
179
///
180
/// # fn test(dev: &Device<Bound>) -> Result {
181
/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
182
/// let c: CoherentAllocation<u64> =
183
/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
184
/// # Ok::<(), Error>(()) }
185
/// ```
186
#[derive(Clone, Copy, PartialEq)]
187
#[repr(transparent)]
188
pub struct Attrs(u32);
189
190
impl Attrs {
191
/// Get the raw representation of this attribute.
192
pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
193
self.0 as crate::ffi::c_ulong
194
}
195
196
/// Check whether `flags` is contained in `self`.
197
pub fn contains(self, flags: Attrs) -> bool {
198
(self & flags) == flags
199
}
200
}
201
202
impl core::ops::BitOr for Attrs {
203
type Output = Self;
204
fn bitor(self, rhs: Self) -> Self::Output {
205
Self(self.0 | rhs.0)
206
}
207
}
208
209
impl core::ops::BitAnd for Attrs {
210
type Output = Self;
211
fn bitand(self, rhs: Self) -> Self::Output {
212
Self(self.0 & rhs.0)
213
}
214
}
215
216
impl core::ops::Not for Attrs {
217
type Output = Self;
218
fn not(self) -> Self::Output {
219
Self(!self.0)
220
}
221
}
222
223
/// DMA mapping attributes.
224
pub mod attrs {
225
use super::Attrs;
226
227
/// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
228
/// and writes may pass each other.
229
pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
230
231
/// Specifies that writes to the mapping may be buffered to improve performance.
232
pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
233
234
/// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
235
pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
236
237
/// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
238
/// that it has been already transferred to 'device' domain.
239
pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
240
241
/// Forces contiguous allocation of the buffer in physical memory.
242
pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
243
244
/// Hints DMA-mapping subsystem that it's probably not worth the time to try
245
/// to allocate memory to in a way that gives better TLB efficiency.
246
pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
247
248
/// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
249
/// `__GFP_NOWARN`).
250
pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
251
252
/// Indicates that the buffer is fully accessible at an elevated privilege level (and
253
/// ideally inaccessible or at least read-only at lesser-privileged levels).
254
pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
255
256
/// Indicates that the buffer is MMIO memory.
257
pub const DMA_ATTR_MMIO: Attrs = Attrs(bindings::DMA_ATTR_MMIO);
258
}
259
260
/// DMA data direction.
261
///
262
/// Corresponds to the C [`enum dma_data_direction`].
263
///
264
/// [`enum dma_data_direction`]: srctree/include/linux/dma-direction.h
265
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
266
#[repr(u32)]
267
pub enum DataDirection {
268
/// The DMA mapping is for bidirectional data transfer.
269
///
270
/// This is used when the buffer can be both read from and written to by the device.
271
/// The cache for the corresponding memory region is both flushed and invalidated.
272
Bidirectional = Self::const_cast(bindings::dma_data_direction_DMA_BIDIRECTIONAL),
273
274
/// The DMA mapping is for data transfer from memory to the device (write).
275
///
276
/// The CPU has prepared data in the buffer, and the device will read it.
277
/// The cache for the corresponding memory region is flushed before device access.
278
ToDevice = Self::const_cast(bindings::dma_data_direction_DMA_TO_DEVICE),
279
280
/// The DMA mapping is for data transfer from the device to memory (read).
281
///
282
/// The device will write data into the buffer for the CPU to read.
283
/// The cache for the corresponding memory region is invalidated before CPU access.
284
FromDevice = Self::const_cast(bindings::dma_data_direction_DMA_FROM_DEVICE),
285
286
/// The DMA mapping is not for data transfer.
287
///
288
/// This is primarily for debugging purposes. With this direction, the DMA mapping API
289
/// will not perform any cache coherency operations.
290
None = Self::const_cast(bindings::dma_data_direction_DMA_NONE),
291
}
292
293
impl DataDirection {
294
/// Casts the bindgen-generated enum type to a `u32` at compile time.
295
///
296
/// This function will cause a compile-time error if the underlying value of the
297
/// C enum is out of bounds for `u32`.
298
const fn const_cast(val: bindings::dma_data_direction) -> u32 {
299
// CAST: The C standard allows compilers to choose different integer types for enums.
300
// To safely check the value, we cast it to a wide signed integer type (`i128`)
301
// which can hold any standard C integer enum type without truncation.
302
let wide_val = val as i128;
303
304
// Check if the value is outside the valid range for the target type `u32`.
305
// CAST: `u32::MAX` is cast to `i128` to match the type of `wide_val` for the comparison.
306
if wide_val < 0 || wide_val > u32::MAX as i128 {
307
// Trigger a compile-time error in a const context.
308
build_error!("C enum value is out of bounds for the target type `u32`.");
309
}
310
311
// CAST: This cast is valid because the check above guarantees that `wide_val`
312
// is within the representable range of `u32`.
313
wide_val as u32
314
}
315
}
316
317
impl From<DataDirection> for bindings::dma_data_direction {
318
/// Returns the raw representation of [`enum dma_data_direction`].
319
fn from(direction: DataDirection) -> Self {
320
// CAST: `direction as u32` gets the underlying representation of our `#[repr(u32)]` enum.
321
// The subsequent cast to `Self` (the bindgen type) assumes the C enum is compatible
322
// with the enum variants of `DataDirection`, which is a valid assumption given our
323
// compile-time checks.
324
direction as u32 as Self
325
}
326
}
327
328
/// An abstraction of the `dma_alloc_coherent` API.
329
///
330
/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
331
/// large coherent DMA regions.
332
///
333
/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
334
/// processor's virtual address space) and the device address which can be given to the device
335
/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
336
/// is dropped.
337
///
338
/// # Invariants
339
///
340
/// - For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
341
/// to an allocated region of coherent memory and `dma_handle` is the DMA address base of the
342
/// region.
343
/// - The size in bytes of the allocation is equal to `size_of::<T> * count`.
344
/// - `size_of::<T> * count` fits into a `usize`.
345
// TODO
346
//
347
// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
348
// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
349
// that device resources can never survive device unbind.
350
//
351
// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
352
// allocation from surviving device unbind; it would require RCU read side critical sections to
353
// access the memory, which may require subsequent unnecessary copies.
354
//
355
// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
356
// entire `CoherentAllocation` including the allocated memory itself.
357
pub struct CoherentAllocation<T: AsBytes + FromBytes> {
358
dev: ARef<device::Device>,
359
dma_handle: DmaAddress,
360
count: usize,
361
cpu_addr: *mut T,
362
dma_attrs: Attrs,
363
}
364
365
impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
366
/// Allocates a region of `size_of::<T> * count` of coherent memory.
367
///
368
/// # Examples
369
///
370
/// ```
371
/// # use kernel::device::{Bound, Device};
372
/// use kernel::dma::{attrs::*, CoherentAllocation};
373
///
374
/// # fn test(dev: &Device<Bound>) -> Result {
375
/// let c: CoherentAllocation<u64> =
376
/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
377
/// # Ok::<(), Error>(()) }
378
/// ```
379
pub fn alloc_attrs(
380
dev: &device::Device<Bound>,
381
count: usize,
382
gfp_flags: kernel::alloc::Flags,
383
dma_attrs: Attrs,
384
) -> Result<CoherentAllocation<T>> {
385
build_assert!(
386
core::mem::size_of::<T>() > 0,
387
"It doesn't make sense for the allocated type to be a ZST"
388
);
389
390
let size = count
391
.checked_mul(core::mem::size_of::<T>())
392
.ok_or(EOVERFLOW)?;
393
let mut dma_handle = 0;
394
// SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
395
let ret = unsafe {
396
bindings::dma_alloc_attrs(
397
dev.as_raw(),
398
size,
399
&mut dma_handle,
400
gfp_flags.as_raw(),
401
dma_attrs.as_raw(),
402
)
403
};
404
if ret.is_null() {
405
return Err(ENOMEM);
406
}
407
// INVARIANT:
408
// - We just successfully allocated a coherent region which is accessible for
409
// `count` elements, hence the cpu address is valid. We also hold a refcounted reference
410
// to the device.
411
// - The allocated `size` is equal to `size_of::<T> * count`.
412
// - The allocated `size` fits into a `usize`.
413
Ok(Self {
414
dev: dev.into(),
415
dma_handle,
416
count,
417
cpu_addr: ret.cast::<T>(),
418
dma_attrs,
419
})
420
}
421
422
/// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
423
/// `dma_attrs` is 0 by default.
424
pub fn alloc_coherent(
425
dev: &device::Device<Bound>,
426
count: usize,
427
gfp_flags: kernel::alloc::Flags,
428
) -> Result<CoherentAllocation<T>> {
429
CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
430
}
431
432
/// Returns the number of elements `T` in this allocation.
433
///
434
/// Note that this is not the size of the allocation in bytes, which is provided by
435
/// [`Self::size`].
436
pub fn count(&self) -> usize {
437
self.count
438
}
439
440
/// Returns the size in bytes of this allocation.
441
pub fn size(&self) -> usize {
442
// INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits into
443
// a `usize`.
444
self.count * core::mem::size_of::<T>()
445
}
446
447
/// Returns the base address to the allocated region in the CPU's virtual address space.
448
pub fn start_ptr(&self) -> *const T {
449
self.cpu_addr
450
}
451
452
/// Returns the base address to the allocated region in the CPU's virtual address space as
453
/// a mutable pointer.
454
pub fn start_ptr_mut(&mut self) -> *mut T {
455
self.cpu_addr
456
}
457
458
/// Returns a DMA handle which may be given to the device as the DMA address base of
459
/// the region.
460
pub fn dma_handle(&self) -> DmaAddress {
461
self.dma_handle
462
}
463
464
/// Returns a DMA handle starting at `offset` (in units of `T`) which may be given to the
465
/// device as the DMA address base of the region.
466
///
467
/// Returns `EINVAL` if `offset` is not within the bounds of the allocation.
468
pub fn dma_handle_with_offset(&self, offset: usize) -> Result<DmaAddress> {
469
if offset >= self.count {
470
Err(EINVAL)
471
} else {
472
// INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits
473
// into a `usize`, and `offset` is inferior to `count`.
474
Ok(self.dma_handle + (offset * core::mem::size_of::<T>()) as DmaAddress)
475
}
476
}
477
478
/// Common helper to validate a range applied from the allocated region in the CPU's virtual
479
/// address space.
480
fn validate_range(&self, offset: usize, count: usize) -> Result {
481
if offset.checked_add(count).ok_or(EOVERFLOW)? > self.count {
482
return Err(EINVAL);
483
}
484
Ok(())
485
}
486
487
/// Returns the data from the region starting from `offset` as a slice.
488
/// `offset` and `count` are in units of `T`, not the number of bytes.
489
///
490
/// For ringbuffer type of r/w access or use-cases where the pointer to the live data is needed,
491
/// [`CoherentAllocation::start_ptr`] or [`CoherentAllocation::start_ptr_mut`] could be used
492
/// instead.
493
///
494
/// # Safety
495
///
496
/// * Callers must ensure that the device does not read/write to/from memory while the returned
497
/// slice is live.
498
/// * Callers must ensure that this call does not race with a write to the same region while
499
/// the returned slice is live.
500
pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> {
501
self.validate_range(offset, count)?;
502
// SAFETY:
503
// - The pointer is valid due to type invariant on `CoherentAllocation`,
504
// we've just checked that the range and index is within bounds. The immutability of the
505
// data is also guaranteed by the safety requirements of the function.
506
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
507
// that `self.count` won't overflow early in the constructor.
508
Ok(unsafe { core::slice::from_raw_parts(self.cpu_addr.add(offset), count) })
509
}
510
511
/// Performs the same functionality as [`CoherentAllocation::as_slice`], except that a mutable
512
/// slice is returned.
513
///
514
/// # Safety
515
///
516
/// * Callers must ensure that the device does not read/write to/from memory while the returned
517
/// slice is live.
518
/// * Callers must ensure that this call does not race with a read or write to the same region
519
/// while the returned slice is live.
520
pub unsafe fn as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]> {
521
self.validate_range(offset, count)?;
522
// SAFETY:
523
// - The pointer is valid due to type invariant on `CoherentAllocation`,
524
// we've just checked that the range and index is within bounds. The immutability of the
525
// data is also guaranteed by the safety requirements of the function.
526
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
527
// that `self.count` won't overflow early in the constructor.
528
Ok(unsafe { core::slice::from_raw_parts_mut(self.cpu_addr.add(offset), count) })
529
}
530
531
/// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the
532
/// number of bytes.
533
///
534
/// # Safety
535
///
536
/// * Callers must ensure that the device does not read/write to/from memory while the returned
537
/// slice is live.
538
/// * Callers must ensure that this call does not race with a read or write to the same region
539
/// that overlaps with this write.
540
///
541
/// # Examples
542
///
543
/// ```
544
/// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result {
545
/// let somedata: [u8; 4] = [0xf; 4];
546
/// let buf: &[u8] = &somedata;
547
/// // SAFETY: There is no concurrent HW operation on the device and no other R/W access to the
548
/// // region.
549
/// unsafe { alloc.write(buf, 0)?; }
550
/// # Ok::<(), Error>(()) }
551
/// ```
552
pub unsafe fn write(&mut self, src: &[T], offset: usize) -> Result {
553
self.validate_range(offset, src.len())?;
554
// SAFETY:
555
// - The pointer is valid due to type invariant on `CoherentAllocation`
556
// and we've just checked that the range and index is within bounds.
557
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
558
// that `self.count` won't overflow early in the constructor.
559
unsafe {
560
core::ptr::copy_nonoverlapping(src.as_ptr(), self.cpu_addr.add(offset), src.len())
561
};
562
Ok(())
563
}
564
565
/// Returns a pointer to an element from the region with bounds checking. `offset` is in
566
/// units of `T`, not the number of bytes.
567
///
568
/// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
569
#[doc(hidden)]
570
pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
571
if offset >= self.count {
572
return Err(EINVAL);
573
}
574
// SAFETY:
575
// - The pointer is valid due to type invariant on `CoherentAllocation`
576
// and we've just checked that the range and index is within bounds.
577
// - `offset` can't overflow since it is smaller than `self.count` and we've checked
578
// that `self.count` won't overflow early in the constructor.
579
Ok(unsafe { self.cpu_addr.add(offset) })
580
}
581
582
/// Reads the value of `field` and ensures that its type is [`FromBytes`].
583
///
584
/// # Safety
585
///
586
/// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
587
/// validated beforehand.
588
///
589
/// Public but hidden since it should only be used from [`dma_read`] macro.
590
#[doc(hidden)]
591
pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
592
// SAFETY:
593
// - By the safety requirements field is valid.
594
// - Using read_volatile() here is not sound as per the usual rules, the usage here is
595
// a special exception with the following notes in place. When dealing with a potential
596
// race from a hardware or code outside kernel (e.g. user-space program), we need that
597
// read on a valid memory is not UB. Currently read_volatile() is used for this, and the
598
// rationale behind is that it should generate the same code as READ_ONCE() which the
599
// kernel already relies on to avoid UB on data races. Note that the usage of
600
// read_volatile() is limited to this particular case, it cannot be used to prevent
601
// the UB caused by racing between two kernel functions nor do they provide atomicity.
602
unsafe { field.read_volatile() }
603
}
604
605
/// Writes a value to `field` and ensures that its type is [`AsBytes`].
606
///
607
/// # Safety
608
///
609
/// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
610
/// validated beforehand.
611
///
612
/// Public but hidden since it should only be used from [`dma_write`] macro.
613
#[doc(hidden)]
614
pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
615
// SAFETY:
616
// - By the safety requirements field is valid.
617
// - Using write_volatile() here is not sound as per the usual rules, the usage here is
618
// a special exception with the following notes in place. When dealing with a potential
619
// race from a hardware or code outside kernel (e.g. user-space program), we need that
620
// write on a valid memory is not UB. Currently write_volatile() is used for this, and the
621
// rationale behind is that it should generate the same code as WRITE_ONCE() which the
622
// kernel already relies on to avoid UB on data races. Note that the usage of
623
// write_volatile() is limited to this particular case, it cannot be used to prevent
624
// the UB caused by racing between two kernel functions nor do they provide atomicity.
625
unsafe { field.write_volatile(val) }
626
}
627
}
628
629
/// Note that the device configured to do DMA must be halted before this object is dropped.
630
impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
631
fn drop(&mut self) {
632
let size = self.count * core::mem::size_of::<T>();
633
// SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
634
// The cpu address, and the dma handle are valid due to the type invariants on
635
// `CoherentAllocation`.
636
unsafe {
637
bindings::dma_free_attrs(
638
self.dev.as_raw(),
639
size,
640
self.cpu_addr.cast(),
641
self.dma_handle,
642
self.dma_attrs.as_raw(),
643
)
644
}
645
}
646
}
647
648
// SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T`
649
// can be sent to another thread.
650
unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
651
652
/// Reads a field of an item from an allocated region of structs.
653
///
654
/// # Examples
655
///
656
/// ```
657
/// use kernel::device::Device;
658
/// use kernel::dma::{attrs::*, CoherentAllocation};
659
///
660
/// struct MyStruct { field: u32, }
661
///
662
/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
663
/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
664
/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
665
/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
666
///
667
/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
668
/// let whole = kernel::dma_read!(alloc[2]);
669
/// let field = kernel::dma_read!(alloc[1].field);
670
/// # Ok::<(), Error>(()) }
671
/// ```
672
#[macro_export]
673
macro_rules! dma_read {
674
($dma:expr, $idx: expr, $($field:tt)*) => {{
675
(|| -> ::core::result::Result<_, $crate::error::Error> {
676
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
677
// SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
678
// dereferenced. The compiler also further validates the expression on whether `field`
679
// is a member of `item` when expanded by the macro.
680
unsafe {
681
let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
682
::core::result::Result::Ok(
683
$crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
684
)
685
}
686
})()
687
}};
688
($dma:ident [ $idx:expr ] $($field:tt)* ) => {
689
$crate::dma_read!($dma, $idx, $($field)*)
690
};
691
($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
692
$crate::dma_read!($($dma).*, $idx, $($field)*)
693
};
694
}
695
696
/// Writes to a field of an item from an allocated region of structs.
697
///
698
/// # Examples
699
///
700
/// ```
701
/// use kernel::device::Device;
702
/// use kernel::dma::{attrs::*, CoherentAllocation};
703
///
704
/// struct MyStruct { member: u32, }
705
///
706
/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
707
/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
708
/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
709
/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
710
///
711
/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
712
/// kernel::dma_write!(alloc[2].member = 0xf);
713
/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
714
/// # Ok::<(), Error>(()) }
715
/// ```
716
#[macro_export]
717
macro_rules! dma_write {
718
($dma:ident [ $idx:expr ] $($field:tt)*) => {{
719
$crate::dma_write!($dma, $idx, $($field)*)
720
}};
721
($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
722
$crate::dma_write!($($dma).*, $idx, $($field)*)
723
}};
724
($dma:expr, $idx: expr, = $val:expr) => {
725
(|| -> ::core::result::Result<_, $crate::error::Error> {
726
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
727
// SAFETY: `item_from_index` ensures that `item` is always a valid item.
728
unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
729
::core::result::Result::Ok(())
730
})()
731
};
732
($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
733
(|| -> ::core::result::Result<_, $crate::error::Error> {
734
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
735
// SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
736
// dereferenced. The compiler also further validates the expression on whether `field`
737
// is a member of `item` when expanded by the macro.
738
unsafe {
739
let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
740
$crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
741
}
742
::core::result::Result::Ok(())
743
})()
744
};
745
}
746
747