Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/security/keys/encrypted-keys/encrypted.c
29520 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2010 IBM Corporation
4
* Copyright (C) 2010 Politecnico di Torino, Italy
5
* TORSEC group -- https://security.polito.it
6
*
7
* Authors:
8
* Mimi Zohar <[email protected]>
9
* Roberto Sassu <[email protected]>
10
*
11
* See Documentation/security/keys/trusted-encrypted.rst
12
*/
13
14
#include <linux/uaccess.h>
15
#include <linux/module.h>
16
#include <linux/init.h>
17
#include <linux/slab.h>
18
#include <linux/parser.h>
19
#include <linux/string.h>
20
#include <linux/err.h>
21
#include <keys/user-type.h>
22
#include <keys/trusted-type.h>
23
#include <keys/encrypted-type.h>
24
#include <linux/key-type.h>
25
#include <linux/random.h>
26
#include <linux/rcupdate.h>
27
#include <linux/scatterlist.h>
28
#include <linux/ctype.h>
29
#include <crypto/aes.h>
30
#include <crypto/sha2.h>
31
#include <crypto/skcipher.h>
32
#include <crypto/utils.h>
33
34
#include "encrypted.h"
35
#include "ecryptfs_format.h"
36
37
static const char KEY_TRUSTED_PREFIX[] = "trusted:";
38
static const char KEY_USER_PREFIX[] = "user:";
39
static const char blkcipher_alg[] = "cbc(aes)";
40
static const char key_format_default[] = "default";
41
static const char key_format_ecryptfs[] = "ecryptfs";
42
static const char key_format_enc32[] = "enc32";
43
static unsigned int ivsize;
44
static int blksize;
45
46
#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
47
#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
48
#define KEY_ECRYPTFS_DESC_LEN 16
49
#define HASH_SIZE SHA256_DIGEST_SIZE
50
#define MAX_DATA_SIZE 4096
51
#define MIN_DATA_SIZE 20
52
#define KEY_ENC32_PAYLOAD_LEN 32
53
54
enum {
55
Opt_new, Opt_load, Opt_update, Opt_err
56
};
57
58
enum {
59
Opt_default, Opt_ecryptfs, Opt_enc32, Opt_error
60
};
61
62
static const match_table_t key_format_tokens = {
63
{Opt_default, "default"},
64
{Opt_ecryptfs, "ecryptfs"},
65
{Opt_enc32, "enc32"},
66
{Opt_error, NULL}
67
};
68
69
static const match_table_t key_tokens = {
70
{Opt_new, "new"},
71
{Opt_load, "load"},
72
{Opt_update, "update"},
73
{Opt_err, NULL}
74
};
75
76
static bool user_decrypted_data = IS_ENABLED(CONFIG_USER_DECRYPTED_DATA);
77
module_param(user_decrypted_data, bool, 0);
78
MODULE_PARM_DESC(user_decrypted_data,
79
"Allow instantiation of encrypted keys using provided decrypted data");
80
81
static int aes_get_sizes(void)
82
{
83
struct crypto_skcipher *tfm;
84
85
tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
86
if (IS_ERR(tfm)) {
87
pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
88
PTR_ERR(tfm));
89
return PTR_ERR(tfm);
90
}
91
ivsize = crypto_skcipher_ivsize(tfm);
92
blksize = crypto_skcipher_blocksize(tfm);
93
crypto_free_skcipher(tfm);
94
return 0;
95
}
96
97
/*
98
* valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
99
*
100
* The description of a encrypted key with format 'ecryptfs' must contain
101
* exactly 16 hexadecimal characters.
102
*
103
*/
104
static int valid_ecryptfs_desc(const char *ecryptfs_desc)
105
{
106
int i;
107
108
if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
109
pr_err("encrypted_key: key description must be %d hexadecimal "
110
"characters long\n", KEY_ECRYPTFS_DESC_LEN);
111
return -EINVAL;
112
}
113
114
for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
115
if (!isxdigit(ecryptfs_desc[i])) {
116
pr_err("encrypted_key: key description must contain "
117
"only hexadecimal characters\n");
118
return -EINVAL;
119
}
120
}
121
122
return 0;
123
}
124
125
/*
126
* valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
127
*
128
* key-type:= "trusted:" | "user:"
129
* desc:= master-key description
130
*
131
* Verify that 'key-type' is valid and that 'desc' exists. On key update,
132
* only the master key description is permitted to change, not the key-type.
133
* The key-type remains constant.
134
*
135
* On success returns 0, otherwise -EINVAL.
136
*/
137
static int valid_master_desc(const char *new_desc, const char *orig_desc)
138
{
139
int prefix_len;
140
141
if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
142
prefix_len = KEY_TRUSTED_PREFIX_LEN;
143
else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
144
prefix_len = KEY_USER_PREFIX_LEN;
145
else
146
return -EINVAL;
147
148
if (!new_desc[prefix_len])
149
return -EINVAL;
150
151
if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
152
return -EINVAL;
153
154
return 0;
155
}
156
157
/*
158
* datablob_parse - parse the keyctl data
159
*
160
* datablob format:
161
* new [<format>] <master-key name> <decrypted data length> [<decrypted data>]
162
* load [<format>] <master-key name> <decrypted data length>
163
* <encrypted iv + data>
164
* update <new-master-key name>
165
*
166
* Tokenizes a copy of the keyctl data, returning a pointer to each token,
167
* which is null terminated.
168
*
169
* On success returns 0, otherwise -EINVAL.
170
*/
171
static int datablob_parse(char *datablob, const char **format,
172
char **master_desc, char **decrypted_datalen,
173
char **hex_encoded_iv, char **decrypted_data)
174
{
175
substring_t args[MAX_OPT_ARGS];
176
int ret = -EINVAL;
177
int key_cmd;
178
int key_format;
179
char *p, *keyword;
180
181
keyword = strsep(&datablob, " \t");
182
if (!keyword) {
183
pr_info("encrypted_key: insufficient parameters specified\n");
184
return ret;
185
}
186
key_cmd = match_token(keyword, key_tokens, args);
187
188
/* Get optional format: default | ecryptfs */
189
p = strsep(&datablob, " \t");
190
if (!p) {
191
pr_err("encrypted_key: insufficient parameters specified\n");
192
return ret;
193
}
194
195
key_format = match_token(p, key_format_tokens, args);
196
switch (key_format) {
197
case Opt_ecryptfs:
198
case Opt_enc32:
199
case Opt_default:
200
*format = p;
201
*master_desc = strsep(&datablob, " \t");
202
break;
203
case Opt_error:
204
*master_desc = p;
205
break;
206
}
207
208
if (!*master_desc) {
209
pr_info("encrypted_key: master key parameter is missing\n");
210
goto out;
211
}
212
213
if (valid_master_desc(*master_desc, NULL) < 0) {
214
pr_info("encrypted_key: master key parameter \'%s\' "
215
"is invalid\n", *master_desc);
216
goto out;
217
}
218
219
if (decrypted_datalen) {
220
*decrypted_datalen = strsep(&datablob, " \t");
221
if (!*decrypted_datalen) {
222
pr_info("encrypted_key: keylen parameter is missing\n");
223
goto out;
224
}
225
}
226
227
switch (key_cmd) {
228
case Opt_new:
229
if (!decrypted_datalen) {
230
pr_info("encrypted_key: keyword \'%s\' not allowed "
231
"when called from .update method\n", keyword);
232
break;
233
}
234
*decrypted_data = strsep(&datablob, " \t");
235
ret = 0;
236
break;
237
case Opt_load:
238
if (!decrypted_datalen) {
239
pr_info("encrypted_key: keyword \'%s\' not allowed "
240
"when called from .update method\n", keyword);
241
break;
242
}
243
*hex_encoded_iv = strsep(&datablob, " \t");
244
if (!*hex_encoded_iv) {
245
pr_info("encrypted_key: hex blob is missing\n");
246
break;
247
}
248
ret = 0;
249
break;
250
case Opt_update:
251
if (decrypted_datalen) {
252
pr_info("encrypted_key: keyword \'%s\' not allowed "
253
"when called from .instantiate method\n",
254
keyword);
255
break;
256
}
257
ret = 0;
258
break;
259
case Opt_err:
260
pr_info("encrypted_key: keyword \'%s\' not recognized\n",
261
keyword);
262
break;
263
}
264
out:
265
return ret;
266
}
267
268
/*
269
* datablob_format - format as an ascii string, before copying to userspace
270
*/
271
static char *datablob_format(struct encrypted_key_payload *epayload,
272
size_t asciiblob_len)
273
{
274
char *ascii_buf, *bufp;
275
u8 *iv = epayload->iv;
276
int len;
277
int i;
278
279
ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
280
if (!ascii_buf)
281
goto out;
282
283
ascii_buf[asciiblob_len] = '\0';
284
285
/* copy datablob master_desc and datalen strings */
286
len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
287
epayload->master_desc, epayload->datalen);
288
289
/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
290
bufp = &ascii_buf[len];
291
for (i = 0; i < (asciiblob_len - len) / 2; i++)
292
bufp = hex_byte_pack(bufp, iv[i]);
293
out:
294
return ascii_buf;
295
}
296
297
/*
298
* request_user_key - request the user key
299
*
300
* Use a user provided key to encrypt/decrypt an encrypted-key.
301
*/
302
static struct key *request_user_key(const char *master_desc, const u8 **master_key,
303
size_t *master_keylen)
304
{
305
const struct user_key_payload *upayload;
306
struct key *ukey;
307
308
ukey = request_key(&key_type_user, master_desc, NULL);
309
if (IS_ERR(ukey))
310
goto error;
311
312
down_read(&ukey->sem);
313
upayload = user_key_payload_locked(ukey);
314
if (!upayload) {
315
/* key was revoked before we acquired its semaphore */
316
up_read(&ukey->sem);
317
key_put(ukey);
318
ukey = ERR_PTR(-EKEYREVOKED);
319
goto error;
320
}
321
*master_key = upayload->data;
322
*master_keylen = upayload->datalen;
323
error:
324
return ukey;
325
}
326
327
enum derived_key_type { ENC_KEY, AUTH_KEY };
328
329
/* Derive authentication/encryption key from trusted key */
330
static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
331
const u8 *master_key, size_t master_keylen)
332
{
333
u8 *derived_buf;
334
unsigned int derived_buf_len;
335
336
derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
337
if (derived_buf_len < HASH_SIZE)
338
derived_buf_len = HASH_SIZE;
339
340
derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
341
if (!derived_buf)
342
return -ENOMEM;
343
344
if (key_type)
345
strcpy(derived_buf, "AUTH_KEY");
346
else
347
strcpy(derived_buf, "ENC_KEY");
348
349
memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
350
master_keylen);
351
sha256(derived_buf, derived_buf_len, derived_key);
352
kfree_sensitive(derived_buf);
353
return 0;
354
}
355
356
static struct skcipher_request *init_skcipher_req(const u8 *key,
357
unsigned int key_len)
358
{
359
struct skcipher_request *req;
360
struct crypto_skcipher *tfm;
361
int ret;
362
363
tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
364
if (IS_ERR(tfm)) {
365
pr_err("encrypted_key: failed to load %s transform (%ld)\n",
366
blkcipher_alg, PTR_ERR(tfm));
367
return ERR_CAST(tfm);
368
}
369
370
ret = crypto_skcipher_setkey(tfm, key, key_len);
371
if (ret < 0) {
372
pr_err("encrypted_key: failed to setkey (%d)\n", ret);
373
crypto_free_skcipher(tfm);
374
return ERR_PTR(ret);
375
}
376
377
req = skcipher_request_alloc(tfm, GFP_KERNEL);
378
if (!req) {
379
pr_err("encrypted_key: failed to allocate request for %s\n",
380
blkcipher_alg);
381
crypto_free_skcipher(tfm);
382
return ERR_PTR(-ENOMEM);
383
}
384
385
skcipher_request_set_callback(req, 0, NULL, NULL);
386
return req;
387
}
388
389
static struct key *request_master_key(struct encrypted_key_payload *epayload,
390
const u8 **master_key, size_t *master_keylen)
391
{
392
struct key *mkey = ERR_PTR(-EINVAL);
393
394
if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
395
KEY_TRUSTED_PREFIX_LEN)) {
396
mkey = request_trusted_key(epayload->master_desc +
397
KEY_TRUSTED_PREFIX_LEN,
398
master_key, master_keylen);
399
} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
400
KEY_USER_PREFIX_LEN)) {
401
mkey = request_user_key(epayload->master_desc +
402
KEY_USER_PREFIX_LEN,
403
master_key, master_keylen);
404
} else
405
goto out;
406
407
if (IS_ERR(mkey)) {
408
int ret = PTR_ERR(mkey);
409
410
if (ret == -ENOTSUPP)
411
pr_info("encrypted_key: key %s not supported",
412
epayload->master_desc);
413
else
414
pr_info("encrypted_key: key %s not found",
415
epayload->master_desc);
416
goto out;
417
}
418
419
dump_master_key(*master_key, *master_keylen);
420
out:
421
return mkey;
422
}
423
424
/* Before returning data to userspace, encrypt decrypted data. */
425
static int derived_key_encrypt(struct encrypted_key_payload *epayload,
426
const u8 *derived_key,
427
unsigned int derived_keylen)
428
{
429
struct scatterlist sg_in[2];
430
struct scatterlist sg_out[1];
431
struct crypto_skcipher *tfm;
432
struct skcipher_request *req;
433
unsigned int encrypted_datalen;
434
u8 iv[AES_BLOCK_SIZE];
435
int ret;
436
437
encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
438
439
req = init_skcipher_req(derived_key, derived_keylen);
440
ret = PTR_ERR(req);
441
if (IS_ERR(req))
442
goto out;
443
dump_decrypted_data(epayload);
444
445
sg_init_table(sg_in, 2);
446
sg_set_buf(&sg_in[0], epayload->decrypted_data,
447
epayload->decrypted_datalen);
448
sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
449
450
sg_init_table(sg_out, 1);
451
sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
452
453
memcpy(iv, epayload->iv, sizeof(iv));
454
skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
455
ret = crypto_skcipher_encrypt(req);
456
tfm = crypto_skcipher_reqtfm(req);
457
skcipher_request_free(req);
458
crypto_free_skcipher(tfm);
459
if (ret < 0)
460
pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
461
else
462
dump_encrypted_data(epayload, encrypted_datalen);
463
out:
464
return ret;
465
}
466
467
static int datablob_hmac_append(struct encrypted_key_payload *epayload,
468
const u8 *master_key, size_t master_keylen)
469
{
470
u8 derived_key[HASH_SIZE];
471
u8 *digest;
472
int ret;
473
474
ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
475
if (ret < 0)
476
goto out;
477
478
digest = epayload->format + epayload->datablob_len;
479
hmac_sha256_usingrawkey(derived_key, sizeof(derived_key),
480
epayload->format, epayload->datablob_len,
481
digest);
482
dump_hmac(NULL, digest, HASH_SIZE);
483
out:
484
memzero_explicit(derived_key, sizeof(derived_key));
485
return ret;
486
}
487
488
/* verify HMAC before decrypting encrypted key */
489
static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
490
const u8 *format, const u8 *master_key,
491
size_t master_keylen)
492
{
493
u8 derived_key[HASH_SIZE];
494
u8 digest[HASH_SIZE];
495
int ret;
496
char *p;
497
unsigned short len;
498
499
ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
500
if (ret < 0)
501
goto out;
502
503
len = epayload->datablob_len;
504
if (!format) {
505
p = epayload->master_desc;
506
len -= strlen(epayload->format) + 1;
507
} else
508
p = epayload->format;
509
510
hmac_sha256_usingrawkey(derived_key, sizeof(derived_key), p, len,
511
digest);
512
ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
513
sizeof(digest));
514
if (ret) {
515
ret = -EINVAL;
516
dump_hmac("datablob",
517
epayload->format + epayload->datablob_len,
518
HASH_SIZE);
519
dump_hmac("calc", digest, HASH_SIZE);
520
}
521
out:
522
memzero_explicit(derived_key, sizeof(derived_key));
523
return ret;
524
}
525
526
static int derived_key_decrypt(struct encrypted_key_payload *epayload,
527
const u8 *derived_key,
528
unsigned int derived_keylen)
529
{
530
struct scatterlist sg_in[1];
531
struct scatterlist sg_out[2];
532
struct crypto_skcipher *tfm;
533
struct skcipher_request *req;
534
unsigned int encrypted_datalen;
535
u8 iv[AES_BLOCK_SIZE];
536
u8 *pad;
537
int ret;
538
539
/* Throwaway buffer to hold the unused zero padding at the end */
540
pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
541
if (!pad)
542
return -ENOMEM;
543
544
encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
545
req = init_skcipher_req(derived_key, derived_keylen);
546
ret = PTR_ERR(req);
547
if (IS_ERR(req))
548
goto out;
549
dump_encrypted_data(epayload, encrypted_datalen);
550
551
sg_init_table(sg_in, 1);
552
sg_init_table(sg_out, 2);
553
sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
554
sg_set_buf(&sg_out[0], epayload->decrypted_data,
555
epayload->decrypted_datalen);
556
sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
557
558
memcpy(iv, epayload->iv, sizeof(iv));
559
skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
560
ret = crypto_skcipher_decrypt(req);
561
tfm = crypto_skcipher_reqtfm(req);
562
skcipher_request_free(req);
563
crypto_free_skcipher(tfm);
564
if (ret < 0)
565
goto out;
566
dump_decrypted_data(epayload);
567
out:
568
kfree(pad);
569
return ret;
570
}
571
572
/* Allocate memory for decrypted key and datablob. */
573
static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
574
const char *format,
575
const char *master_desc,
576
const char *datalen,
577
const char *decrypted_data)
578
{
579
struct encrypted_key_payload *epayload = NULL;
580
unsigned short datablob_len;
581
unsigned short decrypted_datalen;
582
unsigned short payload_datalen;
583
unsigned int encrypted_datalen;
584
unsigned int format_len;
585
long dlen;
586
int i;
587
int ret;
588
589
ret = kstrtol(datalen, 10, &dlen);
590
if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
591
return ERR_PTR(-EINVAL);
592
593
format_len = (!format) ? strlen(key_format_default) : strlen(format);
594
decrypted_datalen = dlen;
595
payload_datalen = decrypted_datalen;
596
597
if (decrypted_data) {
598
if (!user_decrypted_data) {
599
pr_err("encrypted key: instantiation of keys using provided decrypted data is disabled since CONFIG_USER_DECRYPTED_DATA is set to false\n");
600
return ERR_PTR(-EINVAL);
601
}
602
if (strlen(decrypted_data) != decrypted_datalen * 2) {
603
pr_err("encrypted key: decrypted data provided does not match decrypted data length provided\n");
604
return ERR_PTR(-EINVAL);
605
}
606
for (i = 0; i < strlen(decrypted_data); i++) {
607
if (!isxdigit(decrypted_data[i])) {
608
pr_err("encrypted key: decrypted data provided must contain only hexadecimal characters\n");
609
return ERR_PTR(-EINVAL);
610
}
611
}
612
}
613
614
if (format) {
615
if (!strcmp(format, key_format_ecryptfs)) {
616
if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
617
pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n",
618
ECRYPTFS_MAX_KEY_BYTES);
619
return ERR_PTR(-EINVAL);
620
}
621
decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
622
payload_datalen = sizeof(struct ecryptfs_auth_tok);
623
} else if (!strcmp(format, key_format_enc32)) {
624
if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) {
625
pr_err("encrypted_key: enc32 key payload incorrect length: %d\n",
626
decrypted_datalen);
627
return ERR_PTR(-EINVAL);
628
}
629
}
630
}
631
632
encrypted_datalen = roundup(decrypted_datalen, blksize);
633
634
datablob_len = format_len + 1 + strlen(master_desc) + 1
635
+ strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
636
637
ret = key_payload_reserve(key, payload_datalen + datablob_len
638
+ HASH_SIZE + 1);
639
if (ret < 0)
640
return ERR_PTR(ret);
641
642
epayload = kzalloc(sizeof(*epayload) + payload_datalen +
643
datablob_len + HASH_SIZE + 1, GFP_KERNEL);
644
if (!epayload)
645
return ERR_PTR(-ENOMEM);
646
647
epayload->payload_datalen = payload_datalen;
648
epayload->decrypted_datalen = decrypted_datalen;
649
epayload->datablob_len = datablob_len;
650
return epayload;
651
}
652
653
static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
654
const char *format, const char *hex_encoded_iv)
655
{
656
struct key *mkey;
657
u8 derived_key[HASH_SIZE];
658
const u8 *master_key;
659
u8 *hmac;
660
const char *hex_encoded_data;
661
unsigned int encrypted_datalen;
662
size_t master_keylen;
663
size_t asciilen;
664
int ret;
665
666
encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
667
asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
668
if (strlen(hex_encoded_iv) != asciilen)
669
return -EINVAL;
670
671
hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
672
ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
673
if (ret < 0)
674
return -EINVAL;
675
ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
676
encrypted_datalen);
677
if (ret < 0)
678
return -EINVAL;
679
680
hmac = epayload->format + epayload->datablob_len;
681
ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
682
HASH_SIZE);
683
if (ret < 0)
684
return -EINVAL;
685
686
mkey = request_master_key(epayload, &master_key, &master_keylen);
687
if (IS_ERR(mkey))
688
return PTR_ERR(mkey);
689
690
ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
691
if (ret < 0) {
692
pr_err("encrypted_key: bad hmac (%d)\n", ret);
693
goto out;
694
}
695
696
ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
697
if (ret < 0)
698
goto out;
699
700
ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
701
if (ret < 0)
702
pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
703
out:
704
up_read(&mkey->sem);
705
key_put(mkey);
706
memzero_explicit(derived_key, sizeof(derived_key));
707
return ret;
708
}
709
710
static void __ekey_init(struct encrypted_key_payload *epayload,
711
const char *format, const char *master_desc,
712
const char *datalen)
713
{
714
unsigned int format_len;
715
716
format_len = (!format) ? strlen(key_format_default) : strlen(format);
717
epayload->format = epayload->payload_data + epayload->payload_datalen;
718
epayload->master_desc = epayload->format + format_len + 1;
719
epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
720
epayload->iv = epayload->datalen + strlen(datalen) + 1;
721
epayload->encrypted_data = epayload->iv + ivsize + 1;
722
epayload->decrypted_data = epayload->payload_data;
723
724
if (!format)
725
memcpy(epayload->format, key_format_default, format_len);
726
else {
727
if (!strcmp(format, key_format_ecryptfs))
728
epayload->decrypted_data =
729
ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
730
731
memcpy(epayload->format, format, format_len);
732
}
733
734
memcpy(epayload->master_desc, master_desc, strlen(master_desc));
735
memcpy(epayload->datalen, datalen, strlen(datalen));
736
}
737
738
/*
739
* encrypted_init - initialize an encrypted key
740
*
741
* For a new key, use either a random number or user-provided decrypted data in
742
* case it is provided. A random number is used for the iv in both cases. For
743
* an old key, decrypt the hex encoded data.
744
*/
745
static int encrypted_init(struct encrypted_key_payload *epayload,
746
const char *key_desc, const char *format,
747
const char *master_desc, const char *datalen,
748
const char *hex_encoded_iv, const char *decrypted_data)
749
{
750
int ret = 0;
751
752
if (format && !strcmp(format, key_format_ecryptfs)) {
753
ret = valid_ecryptfs_desc(key_desc);
754
if (ret < 0)
755
return ret;
756
757
ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
758
key_desc);
759
}
760
761
__ekey_init(epayload, format, master_desc, datalen);
762
if (hex_encoded_iv) {
763
ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
764
} else if (decrypted_data) {
765
get_random_bytes(epayload->iv, ivsize);
766
ret = hex2bin(epayload->decrypted_data, decrypted_data,
767
epayload->decrypted_datalen);
768
} else {
769
get_random_bytes(epayload->iv, ivsize);
770
get_random_bytes(epayload->decrypted_data, epayload->decrypted_datalen);
771
}
772
return ret;
773
}
774
775
/*
776
* encrypted_instantiate - instantiate an encrypted key
777
*
778
* Instantiates the key:
779
* - by decrypting an existing encrypted datablob, or
780
* - by creating a new encrypted key based on a kernel random number, or
781
* - using provided decrypted data.
782
*
783
* On success, return 0. Otherwise return errno.
784
*/
785
static int encrypted_instantiate(struct key *key,
786
struct key_preparsed_payload *prep)
787
{
788
struct encrypted_key_payload *epayload = NULL;
789
char *datablob = NULL;
790
const char *format = NULL;
791
char *master_desc = NULL;
792
char *decrypted_datalen = NULL;
793
char *hex_encoded_iv = NULL;
794
char *decrypted_data = NULL;
795
size_t datalen = prep->datalen;
796
int ret;
797
798
if (datalen <= 0 || datalen > 32767 || !prep->data)
799
return -EINVAL;
800
801
datablob = kmalloc(datalen + 1, GFP_KERNEL);
802
if (!datablob)
803
return -ENOMEM;
804
datablob[datalen] = 0;
805
memcpy(datablob, prep->data, datalen);
806
ret = datablob_parse(datablob, &format, &master_desc,
807
&decrypted_datalen, &hex_encoded_iv, &decrypted_data);
808
if (ret < 0)
809
goto out;
810
811
epayload = encrypted_key_alloc(key, format, master_desc,
812
decrypted_datalen, decrypted_data);
813
if (IS_ERR(epayload)) {
814
ret = PTR_ERR(epayload);
815
goto out;
816
}
817
ret = encrypted_init(epayload, key->description, format, master_desc,
818
decrypted_datalen, hex_encoded_iv, decrypted_data);
819
if (ret < 0) {
820
kfree_sensitive(epayload);
821
goto out;
822
}
823
824
rcu_assign_keypointer(key, epayload);
825
out:
826
kfree_sensitive(datablob);
827
return ret;
828
}
829
830
static void encrypted_rcu_free(struct rcu_head *rcu)
831
{
832
struct encrypted_key_payload *epayload;
833
834
epayload = container_of(rcu, struct encrypted_key_payload, rcu);
835
kfree_sensitive(epayload);
836
}
837
838
/*
839
* encrypted_update - update the master key description
840
*
841
* Change the master key description for an existing encrypted key.
842
* The next read will return an encrypted datablob using the new
843
* master key description.
844
*
845
* On success, return 0. Otherwise return errno.
846
*/
847
static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
848
{
849
struct encrypted_key_payload *epayload = key->payload.data[0];
850
struct encrypted_key_payload *new_epayload;
851
char *buf;
852
char *new_master_desc = NULL;
853
const char *format = NULL;
854
size_t datalen = prep->datalen;
855
int ret = 0;
856
857
if (key_is_negative(key))
858
return -ENOKEY;
859
if (datalen <= 0 || datalen > 32767 || !prep->data)
860
return -EINVAL;
861
862
buf = kmalloc(datalen + 1, GFP_KERNEL);
863
if (!buf)
864
return -ENOMEM;
865
866
buf[datalen] = 0;
867
memcpy(buf, prep->data, datalen);
868
ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL, NULL);
869
if (ret < 0)
870
goto out;
871
872
ret = valid_master_desc(new_master_desc, epayload->master_desc);
873
if (ret < 0)
874
goto out;
875
876
new_epayload = encrypted_key_alloc(key, epayload->format,
877
new_master_desc, epayload->datalen, NULL);
878
if (IS_ERR(new_epayload)) {
879
ret = PTR_ERR(new_epayload);
880
goto out;
881
}
882
883
__ekey_init(new_epayload, epayload->format, new_master_desc,
884
epayload->datalen);
885
886
memcpy(new_epayload->iv, epayload->iv, ivsize);
887
memcpy(new_epayload->payload_data, epayload->payload_data,
888
epayload->payload_datalen);
889
890
rcu_assign_keypointer(key, new_epayload);
891
call_rcu(&epayload->rcu, encrypted_rcu_free);
892
out:
893
kfree_sensitive(buf);
894
return ret;
895
}
896
897
/*
898
* encrypted_read - format and copy out the encrypted data
899
*
900
* The resulting datablob format is:
901
* <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
902
*
903
* On success, return to userspace the encrypted key datablob size.
904
*/
905
static long encrypted_read(const struct key *key, char *buffer,
906
size_t buflen)
907
{
908
struct encrypted_key_payload *epayload;
909
struct key *mkey;
910
const u8 *master_key;
911
size_t master_keylen;
912
char derived_key[HASH_SIZE];
913
char *ascii_buf;
914
size_t asciiblob_len;
915
int ret;
916
917
epayload = dereference_key_locked(key);
918
919
/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
920
asciiblob_len = epayload->datablob_len + ivsize + 1
921
+ roundup(epayload->decrypted_datalen, blksize)
922
+ (HASH_SIZE * 2);
923
924
if (!buffer || buflen < asciiblob_len)
925
return asciiblob_len;
926
927
mkey = request_master_key(epayload, &master_key, &master_keylen);
928
if (IS_ERR(mkey))
929
return PTR_ERR(mkey);
930
931
ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
932
if (ret < 0)
933
goto out;
934
935
ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
936
if (ret < 0)
937
goto out;
938
939
ret = datablob_hmac_append(epayload, master_key, master_keylen);
940
if (ret < 0)
941
goto out;
942
943
ascii_buf = datablob_format(epayload, asciiblob_len);
944
if (!ascii_buf) {
945
ret = -ENOMEM;
946
goto out;
947
}
948
949
up_read(&mkey->sem);
950
key_put(mkey);
951
memzero_explicit(derived_key, sizeof(derived_key));
952
953
memcpy(buffer, ascii_buf, asciiblob_len);
954
kfree_sensitive(ascii_buf);
955
956
return asciiblob_len;
957
out:
958
up_read(&mkey->sem);
959
key_put(mkey);
960
memzero_explicit(derived_key, sizeof(derived_key));
961
return ret;
962
}
963
964
/*
965
* encrypted_destroy - clear and free the key's payload
966
*/
967
static void encrypted_destroy(struct key *key)
968
{
969
kfree_sensitive(key->payload.data[0]);
970
}
971
972
struct key_type key_type_encrypted = {
973
.name = "encrypted",
974
.instantiate = encrypted_instantiate,
975
.update = encrypted_update,
976
.destroy = encrypted_destroy,
977
.describe = user_describe,
978
.read = encrypted_read,
979
};
980
EXPORT_SYMBOL_GPL(key_type_encrypted);
981
982
static int __init init_encrypted(void)
983
{
984
int ret;
985
986
ret = aes_get_sizes();
987
if (ret < 0)
988
return ret;
989
return register_key_type(&key_type_encrypted);
990
}
991
992
static void __exit cleanup_encrypted(void)
993
{
994
unregister_key_type(&key_type_encrypted);
995
}
996
997
late_initcall(init_encrypted);
998
module_exit(cleanup_encrypted);
999
1000
MODULE_DESCRIPTION("Encrypted key type");
1001
MODULE_LICENSE("GPL");
1002
1003