#undef _GNU_SOURCE
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <inttypes.h>
#include <linux/kernel.h>
#include "libbpf.h"
#include "libbpf_internal.h"
#ifndef ENOTSUPP
#define ENOTSUPP 524
#endif
#pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64
#define ERRNO_OFFSET(e) ((e) - __LIBBPF_ERRNO__START)
#define ERRCODE_OFFSET(c) ERRNO_OFFSET(LIBBPF_ERRNO__##c)
#define NR_ERRNO (__LIBBPF_ERRNO__END - __LIBBPF_ERRNO__START)
static const char *libbpf_strerror_table[NR_ERRNO] = {
[ERRCODE_OFFSET(LIBELF)] = "Something wrong in libelf",
[ERRCODE_OFFSET(FORMAT)] = "BPF object format invalid",
[ERRCODE_OFFSET(KVERSION)] = "'version' section incorrect or lost",
[ERRCODE_OFFSET(ENDIAN)] = "Endian mismatch",
[ERRCODE_OFFSET(INTERNAL)] = "Internal error in libbpf",
[ERRCODE_OFFSET(RELOC)] = "Relocation failed",
[ERRCODE_OFFSET(VERIFY)] = "Kernel verifier blocks program loading",
[ERRCODE_OFFSET(PROG2BIG)] = "Program too big",
[ERRCODE_OFFSET(KVER)] = "Incorrect kernel version",
[ERRCODE_OFFSET(PROGTYPE)] = "Kernel doesn't support this program type",
[ERRCODE_OFFSET(WRNGPID)] = "Wrong pid in netlink message",
[ERRCODE_OFFSET(INVSEQ)] = "Invalid netlink sequence",
[ERRCODE_OFFSET(NLPARSE)] = "Incorrect netlink message parsing",
};
int libbpf_strerror(int err, char *buf, size_t size)
{
int ret;
if (!buf || !size)
return libbpf_err(-EINVAL);
err = err > 0 ? err : -err;
if (err < __LIBBPF_ERRNO__START) {
ret = strerror_r(err, buf, size);
buf[size - 1] = '\0';
return libbpf_err_errno(ret);
}
if (err < __LIBBPF_ERRNO__END) {
const char *msg;
msg = libbpf_strerror_table[ERRNO_OFFSET(err)];
ret = snprintf(buf, size, "%s", msg);
buf[size - 1] = '\0';
if (ret >= size)
return libbpf_err(-ERANGE);
return 0;
}
ret = snprintf(buf, size, "Unknown libbpf error %d", err);
buf[size - 1] = '\0';
if (ret >= size)
return libbpf_err(-ERANGE);
return libbpf_err(-ENOENT);
}
const char *libbpf_errstr(int err)
{
static __thread char buf[12];
if (err > 0)
err = -err;
switch (err) {
case -E2BIG: return "-E2BIG";
case -EACCES: return "-EACCES";
case -EADDRINUSE: return "-EADDRINUSE";
case -EADDRNOTAVAIL: return "-EADDRNOTAVAIL";
case -EAGAIN: return "-EAGAIN";
case -EALREADY: return "-EALREADY";
case -EBADF: return "-EBADF";
case -EBADFD: return "-EBADFD";
case -EBUSY: return "-EBUSY";
case -ECANCELED: return "-ECANCELED";
case -ECHILD: return "-ECHILD";
case -EDEADLK: return "-EDEADLK";
case -EDOM: return "-EDOM";
case -EEXIST: return "-EEXIST";
case -EFAULT: return "-EFAULT";
case -EFBIG: return "-EFBIG";
case -EILSEQ: return "-EILSEQ";
case -EINPROGRESS: return "-EINPROGRESS";
case -EINTR: return "-EINTR";
case -EINVAL: return "-EINVAL";
case -EIO: return "-EIO";
case -EISDIR: return "-EISDIR";
case -ELOOP: return "-ELOOP";
case -EMFILE: return "-EMFILE";
case -EMLINK: return "-EMLINK";
case -EMSGSIZE: return "-EMSGSIZE";
case -ENAMETOOLONG: return "-ENAMETOOLONG";
case -ENFILE: return "-ENFILE";
case -ENODATA: return "-ENODATA";
case -ENODEV: return "-ENODEV";
case -ENOENT: return "-ENOENT";
case -ENOEXEC: return "-ENOEXEC";
case -ENOLINK: return "-ENOLINK";
case -ENOMEM: return "-ENOMEM";
case -ENOSPC: return "-ENOSPC";
case -ENOTBLK: return "-ENOTBLK";
case -ENOTDIR: return "-ENOTDIR";
case -ENOTSUPP: return "-ENOTSUPP";
case -ENOTTY: return "-ENOTTY";
case -ENXIO: return "-ENXIO";
case -EOPNOTSUPP: return "-EOPNOTSUPP";
case -EOVERFLOW: return "-EOVERFLOW";
case -EPERM: return "-EPERM";
case -EPIPE: return "-EPIPE";
case -EPROTO: return "-EPROTO";
case -EPROTONOSUPPORT: return "-EPROTONOSUPPORT";
case -ERANGE: return "-ERANGE";
case -EROFS: return "-EROFS";
case -ESPIPE: return "-ESPIPE";
case -ESRCH: return "-ESRCH";
case -ETXTBSY: return "-ETXTBSY";
case -EUCLEAN: return "-EUCLEAN";
case -EXDEV: return "-EXDEV";
default:
snprintf(buf, sizeof(buf), "%d", err);
return buf;
}
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
#pragma GCC diagnostic ignored "-Wattributes"
struct __packed_u32 { __u32 __val; } __attribute__((packed));
#pragma GCC diagnostic pop
#define get_unaligned_be32(p) be32_to_cpu((((struct __packed_u32 *)(p))->__val))
#define put_unaligned_be32(v, p) do { \
((struct __packed_u32 *)(p))->__val = cpu_to_be32(v); \
} while (0)
#define SHA256_BLOCK_LENGTH 64
#define Ch(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define Sigma_0(x) (ror32((x), 2) ^ ror32((x), 13) ^ ror32((x), 22))
#define Sigma_1(x) (ror32((x), 6) ^ ror32((x), 11) ^ ror32((x), 25))
#define sigma_0(x) (ror32((x), 7) ^ ror32((x), 18) ^ ((x) >> 3))
#define sigma_1(x) (ror32((x), 17) ^ ror32((x), 19) ^ ((x) >> 10))
static const __u32 sha256_K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
};
#define SHA256_ROUND(i, a, b, c, d, e, f, g, h) \
{ \
__u32 tmp = h + Sigma_1(e) + Ch(e, f, g) + sha256_K[i] + w[i]; \
d += tmp; \
h = tmp + Sigma_0(a) + Maj(a, b, c); \
}
static void sha256_blocks(__u32 state[8], const __u8 *data, size_t nblocks)
{
while (nblocks--) {
__u32 a = state[0];
__u32 b = state[1];
__u32 c = state[2];
__u32 d = state[3];
__u32 e = state[4];
__u32 f = state[5];
__u32 g = state[6];
__u32 h = state[7];
__u32 w[64];
int i;
for (i = 0; i < 16; i++)
w[i] = get_unaligned_be32(&data[4 * i]);
for (; i < ARRAY_SIZE(w); i++)
w[i] = sigma_1(w[i - 2]) + w[i - 7] +
sigma_0(w[i - 15]) + w[i - 16];
for (i = 0; i < ARRAY_SIZE(w); i += 8) {
SHA256_ROUND(i + 0, a, b, c, d, e, f, g, h);
SHA256_ROUND(i + 1, h, a, b, c, d, e, f, g);
SHA256_ROUND(i + 2, g, h, a, b, c, d, e, f);
SHA256_ROUND(i + 3, f, g, h, a, b, c, d, e);
SHA256_ROUND(i + 4, e, f, g, h, a, b, c, d);
SHA256_ROUND(i + 5, d, e, f, g, h, a, b, c);
SHA256_ROUND(i + 6, c, d, e, f, g, h, a, b);
SHA256_ROUND(i + 7, b, c, d, e, f, g, h, a);
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
data += SHA256_BLOCK_LENGTH;
}
}
void libbpf_sha256(const void *data, size_t len, __u8 out[SHA256_DIGEST_LENGTH])
{
__u32 state[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
const __be64 bitcount = cpu_to_be64((__u64)len * 8);
__u8 final_data[2 * SHA256_BLOCK_LENGTH] = { 0 };
size_t final_len = len % SHA256_BLOCK_LENGTH;
int i;
sha256_blocks(state, data, len / SHA256_BLOCK_LENGTH);
memcpy(final_data, data + len - final_len, final_len);
final_data[final_len] = 0x80;
final_len = roundup(final_len + 9, SHA256_BLOCK_LENGTH);
memcpy(&final_data[final_len - 8], &bitcount, 8);
sha256_blocks(state, final_data, final_len / SHA256_BLOCK_LENGTH);
for (i = 0; i < ARRAY_SIZE(state); i++)
put_unaligned_be32(state[i], &out[4 * i]);
}