Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/virt/kvm/kvm_main.c
29509 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Kernel-based Virtual Machine (KVM) Hypervisor
4
*
5
* Copyright (C) 2006 Qumranet, Inc.
6
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
7
*
8
* Authors:
9
* Avi Kivity <[email protected]>
10
* Yaniv Kamay <[email protected]>
11
*/
12
13
#include <kvm/iodev.h>
14
15
#include <linux/kvm_host.h>
16
#include <linux/kvm.h>
17
#include <linux/module.h>
18
#include <linux/errno.h>
19
#include <linux/percpu.h>
20
#include <linux/mm.h>
21
#include <linux/miscdevice.h>
22
#include <linux/vmalloc.h>
23
#include <linux/reboot.h>
24
#include <linux/debugfs.h>
25
#include <linux/highmem.h>
26
#include <linux/file.h>
27
#include <linux/syscore_ops.h>
28
#include <linux/cpu.h>
29
#include <linux/sched/signal.h>
30
#include <linux/sched/mm.h>
31
#include <linux/sched/stat.h>
32
#include <linux/cpumask.h>
33
#include <linux/smp.h>
34
#include <linux/anon_inodes.h>
35
#include <linux/profile.h>
36
#include <linux/kvm_para.h>
37
#include <linux/pagemap.h>
38
#include <linux/mman.h>
39
#include <linux/swap.h>
40
#include <linux/bitops.h>
41
#include <linux/spinlock.h>
42
#include <linux/compat.h>
43
#include <linux/srcu.h>
44
#include <linux/hugetlb.h>
45
#include <linux/slab.h>
46
#include <linux/sort.h>
47
#include <linux/bsearch.h>
48
#include <linux/io.h>
49
#include <linux/lockdep.h>
50
#include <linux/kthread.h>
51
#include <linux/suspend.h>
52
53
#include <asm/processor.h>
54
#include <asm/ioctl.h>
55
#include <linux/uaccess.h>
56
57
#include "coalesced_mmio.h"
58
#include "async_pf.h"
59
#include "kvm_mm.h"
60
#include "vfio.h"
61
62
#include <trace/events/ipi.h>
63
64
#define CREATE_TRACE_POINTS
65
#include <trace/events/kvm.h>
66
67
#include <linux/kvm_dirty_ring.h>
68
69
70
/* Worst case buffer size needed for holding an integer. */
71
#define ITOA_MAX_LEN 12
72
73
MODULE_AUTHOR("Qumranet");
74
MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
75
MODULE_LICENSE("GPL");
76
77
/* Architectures should define their poll value according to the halt latency */
78
unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
79
module_param(halt_poll_ns, uint, 0644);
80
EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns);
81
82
/* Default doubles per-vcpu halt_poll_ns. */
83
unsigned int halt_poll_ns_grow = 2;
84
module_param(halt_poll_ns_grow, uint, 0644);
85
EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow);
86
87
/* The start value to grow halt_poll_ns from */
88
unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
89
module_param(halt_poll_ns_grow_start, uint, 0644);
90
EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow_start);
91
92
/* Default halves per-vcpu halt_poll_ns. */
93
unsigned int halt_poll_ns_shrink = 2;
94
module_param(halt_poll_ns_shrink, uint, 0644);
95
EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_shrink);
96
97
/*
98
* Allow direct access (from KVM or the CPU) without MMU notifier protection
99
* to unpinned pages.
100
*/
101
static bool allow_unsafe_mappings;
102
module_param(allow_unsafe_mappings, bool, 0444);
103
104
/*
105
* Ordering of locks:
106
*
107
* kvm->lock --> kvm->slots_lock --> kvm->irq_lock
108
*/
109
110
DEFINE_MUTEX(kvm_lock);
111
LIST_HEAD(vm_list);
112
113
static struct kmem_cache *kvm_vcpu_cache;
114
115
static __read_mostly struct preempt_ops kvm_preempt_ops;
116
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
117
118
static struct dentry *kvm_debugfs_dir;
119
120
static const struct file_operations stat_fops_per_vm;
121
122
static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123
unsigned long arg);
124
#ifdef CONFIG_KVM_COMPAT
125
static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126
unsigned long arg);
127
#define KVM_COMPAT(c) .compat_ioctl = (c)
128
#else
129
/*
130
* For architectures that don't implement a compat infrastructure,
131
* adopt a double line of defense:
132
* - Prevent a compat task from opening /dev/kvm
133
* - If the open has been done by a 64bit task, and the KVM fd
134
* passed to a compat task, let the ioctls fail.
135
*/
136
static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137
unsigned long arg) { return -EINVAL; }
138
139
static int kvm_no_compat_open(struct inode *inode, struct file *file)
140
{
141
return is_compat_task() ? -ENODEV : 0;
142
}
143
#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144
.open = kvm_no_compat_open
145
#endif
146
147
static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149
#define KVM_EVENT_CREATE_VM 0
150
#define KVM_EVENT_DESTROY_VM 1
151
static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152
static unsigned long long kvm_createvm_count;
153
static unsigned long long kvm_active_vms;
154
155
static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
157
__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158
{
159
}
160
161
/*
162
* Switches to specified vcpu, until a matching vcpu_put()
163
*/
164
void vcpu_load(struct kvm_vcpu *vcpu)
165
{
166
int cpu = get_cpu();
167
168
__this_cpu_write(kvm_running_vcpu, vcpu);
169
preempt_notifier_register(&vcpu->preempt_notifier);
170
kvm_arch_vcpu_load(vcpu, cpu);
171
put_cpu();
172
}
173
EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_load);
174
175
void vcpu_put(struct kvm_vcpu *vcpu)
176
{
177
preempt_disable();
178
kvm_arch_vcpu_put(vcpu);
179
preempt_notifier_unregister(&vcpu->preempt_notifier);
180
__this_cpu_write(kvm_running_vcpu, NULL);
181
preempt_enable();
182
}
183
EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_put);
184
185
/* TODO: merge with kvm_arch_vcpu_should_kick */
186
static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
187
{
188
int mode = kvm_vcpu_exiting_guest_mode(vcpu);
189
190
/*
191
* We need to wait for the VCPU to reenable interrupts and get out of
192
* READING_SHADOW_PAGE_TABLES mode.
193
*/
194
if (req & KVM_REQUEST_WAIT)
195
return mode != OUTSIDE_GUEST_MODE;
196
197
/*
198
* Need to kick a running VCPU, but otherwise there is nothing to do.
199
*/
200
return mode == IN_GUEST_MODE;
201
}
202
203
static void ack_kick(void *_completed)
204
{
205
}
206
207
static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
208
{
209
if (cpumask_empty(cpus))
210
return false;
211
212
smp_call_function_many(cpus, ack_kick, NULL, wait);
213
return true;
214
}
215
216
static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
217
struct cpumask *tmp, int current_cpu)
218
{
219
int cpu;
220
221
if (likely(!(req & KVM_REQUEST_NO_ACTION)))
222
__kvm_make_request(req, vcpu);
223
224
if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
225
return;
226
227
/*
228
* Note, the vCPU could get migrated to a different pCPU at any point
229
* after kvm_request_needs_ipi(), which could result in sending an IPI
230
* to the previous pCPU. But, that's OK because the purpose of the IPI
231
* is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
232
* satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
233
* after this point is also OK, as the requirement is only that KVM wait
234
* for vCPUs that were reading SPTEs _before_ any changes were
235
* finalized. See kvm_vcpu_kick() for more details on handling requests.
236
*/
237
if (kvm_request_needs_ipi(vcpu, req)) {
238
cpu = READ_ONCE(vcpu->cpu);
239
if (cpu != -1 && cpu != current_cpu)
240
__cpumask_set_cpu(cpu, tmp);
241
}
242
}
243
244
bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
245
unsigned long *vcpu_bitmap)
246
{
247
struct kvm_vcpu *vcpu;
248
struct cpumask *cpus;
249
int i, me;
250
bool called;
251
252
me = get_cpu();
253
254
cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
255
cpumask_clear(cpus);
256
257
for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
258
vcpu = kvm_get_vcpu(kvm, i);
259
if (!vcpu)
260
continue;
261
kvm_make_vcpu_request(vcpu, req, cpus, me);
262
}
263
264
called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
265
put_cpu();
266
267
return called;
268
}
269
270
bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
271
{
272
struct kvm_vcpu *vcpu;
273
struct cpumask *cpus;
274
unsigned long i;
275
bool called;
276
int me;
277
278
me = get_cpu();
279
280
cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
281
cpumask_clear(cpus);
282
283
kvm_for_each_vcpu(i, vcpu, kvm)
284
kvm_make_vcpu_request(vcpu, req, cpus, me);
285
286
called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
287
put_cpu();
288
289
return called;
290
}
291
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_make_all_cpus_request);
292
293
void kvm_flush_remote_tlbs(struct kvm *kvm)
294
{
295
++kvm->stat.generic.remote_tlb_flush_requests;
296
297
/*
298
* We want to publish modifications to the page tables before reading
299
* mode. Pairs with a memory barrier in arch-specific code.
300
* - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
301
* and smp_mb in walk_shadow_page_lockless_begin/end.
302
* - powerpc: smp_mb in kvmppc_prepare_to_enter.
303
*
304
* There is already an smp_mb__after_atomic() before
305
* kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
306
* barrier here.
307
*/
308
if (!kvm_arch_flush_remote_tlbs(kvm)
309
|| kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
310
++kvm->stat.generic.remote_tlb_flush;
311
}
312
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_flush_remote_tlbs);
313
314
void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
315
{
316
if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
317
return;
318
319
/*
320
* Fall back to a flushing entire TLBs if the architecture range-based
321
* TLB invalidation is unsupported or can't be performed for whatever
322
* reason.
323
*/
324
kvm_flush_remote_tlbs(kvm);
325
}
326
327
void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
328
const struct kvm_memory_slot *memslot)
329
{
330
/*
331
* All current use cases for flushing the TLBs for a specific memslot
332
* are related to dirty logging, and many do the TLB flush out of
333
* mmu_lock. The interaction between the various operations on memslot
334
* must be serialized by slots_lock to ensure the TLB flush from one
335
* operation is observed by any other operation on the same memslot.
336
*/
337
lockdep_assert_held(&kvm->slots_lock);
338
kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
339
}
340
341
static void kvm_flush_shadow_all(struct kvm *kvm)
342
{
343
kvm_arch_flush_shadow_all(kvm);
344
kvm_arch_guest_memory_reclaimed(kvm);
345
}
346
347
#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
348
static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
349
gfp_t gfp_flags)
350
{
351
void *page;
352
353
gfp_flags |= mc->gfp_zero;
354
355
if (mc->kmem_cache)
356
return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
357
358
page = (void *)__get_free_page(gfp_flags);
359
if (page && mc->init_value)
360
memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
361
return page;
362
}
363
364
int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
365
{
366
gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
367
void *obj;
368
369
if (mc->nobjs >= min)
370
return 0;
371
372
if (unlikely(!mc->objects)) {
373
if (WARN_ON_ONCE(!capacity))
374
return -EIO;
375
376
/*
377
* Custom init values can be used only for page allocations,
378
* and obviously conflict with __GFP_ZERO.
379
*/
380
if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
381
return -EIO;
382
383
mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
384
if (!mc->objects)
385
return -ENOMEM;
386
387
mc->capacity = capacity;
388
}
389
390
/* It is illegal to request a different capacity across topups. */
391
if (WARN_ON_ONCE(mc->capacity != capacity))
392
return -EIO;
393
394
while (mc->nobjs < mc->capacity) {
395
obj = mmu_memory_cache_alloc_obj(mc, gfp);
396
if (!obj)
397
return mc->nobjs >= min ? 0 : -ENOMEM;
398
mc->objects[mc->nobjs++] = obj;
399
}
400
return 0;
401
}
402
403
int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
404
{
405
return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
406
}
407
408
int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
409
{
410
return mc->nobjs;
411
}
412
413
void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
414
{
415
while (mc->nobjs) {
416
if (mc->kmem_cache)
417
kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
418
else
419
free_page((unsigned long)mc->objects[--mc->nobjs]);
420
}
421
422
kvfree(mc->objects);
423
424
mc->objects = NULL;
425
mc->capacity = 0;
426
}
427
428
void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
429
{
430
void *p;
431
432
if (WARN_ON(!mc->nobjs))
433
p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
434
else
435
p = mc->objects[--mc->nobjs];
436
BUG_ON(!p);
437
return p;
438
}
439
#endif
440
441
static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
442
{
443
mutex_init(&vcpu->mutex);
444
vcpu->cpu = -1;
445
vcpu->kvm = kvm;
446
vcpu->vcpu_id = id;
447
vcpu->pid = NULL;
448
rwlock_init(&vcpu->pid_lock);
449
#ifndef __KVM_HAVE_ARCH_WQP
450
rcuwait_init(&vcpu->wait);
451
#endif
452
kvm_async_pf_vcpu_init(vcpu);
453
454
kvm_vcpu_set_in_spin_loop(vcpu, false);
455
kvm_vcpu_set_dy_eligible(vcpu, false);
456
vcpu->preempted = false;
457
vcpu->ready = false;
458
preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
459
vcpu->last_used_slot = NULL;
460
461
/* Fill the stats id string for the vcpu */
462
snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
463
task_pid_nr(current), id);
464
}
465
466
static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
467
{
468
kvm_arch_vcpu_destroy(vcpu);
469
kvm_dirty_ring_free(&vcpu->dirty_ring);
470
471
/*
472
* No need for rcu_read_lock as VCPU_RUN is the only place that changes
473
* the vcpu->pid pointer, and at destruction time all file descriptors
474
* are already gone.
475
*/
476
put_pid(vcpu->pid);
477
478
free_page((unsigned long)vcpu->run);
479
kmem_cache_free(kvm_vcpu_cache, vcpu);
480
}
481
482
void kvm_destroy_vcpus(struct kvm *kvm)
483
{
484
unsigned long i;
485
struct kvm_vcpu *vcpu;
486
487
kvm_for_each_vcpu(i, vcpu, kvm) {
488
kvm_vcpu_destroy(vcpu);
489
xa_erase(&kvm->vcpu_array, i);
490
491
/*
492
* Assert that the vCPU isn't visible in any way, to ensure KVM
493
* doesn't trigger a use-after-free if destroying vCPUs results
494
* in VM-wide request, e.g. to flush remote TLBs when tearing
495
* down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires.
496
*/
497
WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i));
498
}
499
500
atomic_set(&kvm->online_vcpus, 0);
501
}
502
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_destroy_vcpus);
503
504
#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
505
static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
506
{
507
return container_of(mn, struct kvm, mmu_notifier);
508
}
509
510
typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
511
512
typedef void (*on_lock_fn_t)(struct kvm *kvm);
513
514
struct kvm_mmu_notifier_range {
515
/*
516
* 64-bit addresses, as KVM notifiers can operate on host virtual
517
* addresses (unsigned long) and guest physical addresses (64-bit).
518
*/
519
u64 start;
520
u64 end;
521
union kvm_mmu_notifier_arg arg;
522
gfn_handler_t handler;
523
on_lock_fn_t on_lock;
524
bool flush_on_ret;
525
bool may_block;
526
bool lockless;
527
};
528
529
/*
530
* The inner-most helper returns a tuple containing the return value from the
531
* arch- and action-specific handler, plus a flag indicating whether or not at
532
* least one memslot was found, i.e. if the handler found guest memory.
533
*
534
* Note, most notifiers are averse to booleans, so even though KVM tracks the
535
* return from arch code as a bool, outer helpers will cast it to an int. :-(
536
*/
537
typedef struct kvm_mmu_notifier_return {
538
bool ret;
539
bool found_memslot;
540
} kvm_mn_ret_t;
541
542
/*
543
* Use a dedicated stub instead of NULL to indicate that there is no callback
544
* function/handler. The compiler technically can't guarantee that a real
545
* function will have a non-zero address, and so it will generate code to
546
* check for !NULL, whereas comparing against a stub will be elided at compile
547
* time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
548
*/
549
static void kvm_null_fn(void)
550
{
551
552
}
553
#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
554
555
/* Iterate over each memslot intersecting [start, last] (inclusive) range */
556
#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
557
for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
558
node; \
559
node = interval_tree_iter_next(node, start, last)) \
560
561
static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm,
562
const struct kvm_mmu_notifier_range *range)
563
{
564
struct kvm_mmu_notifier_return r = {
565
.ret = false,
566
.found_memslot = false,
567
};
568
struct kvm_gfn_range gfn_range;
569
struct kvm_memory_slot *slot;
570
struct kvm_memslots *slots;
571
int i, idx;
572
573
if (WARN_ON_ONCE(range->end <= range->start))
574
return r;
575
576
/* A null handler is allowed if and only if on_lock() is provided. */
577
if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
578
IS_KVM_NULL_FN(range->handler)))
579
return r;
580
581
/* on_lock will never be called for lockless walks */
582
if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock)))
583
return r;
584
585
idx = srcu_read_lock(&kvm->srcu);
586
587
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
588
struct interval_tree_node *node;
589
590
slots = __kvm_memslots(kvm, i);
591
kvm_for_each_memslot_in_hva_range(node, slots,
592
range->start, range->end - 1) {
593
unsigned long hva_start, hva_end;
594
595
slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
596
hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
597
hva_end = min_t(unsigned long, range->end,
598
slot->userspace_addr + (slot->npages << PAGE_SHIFT));
599
600
/*
601
* To optimize for the likely case where the address
602
* range is covered by zero or one memslots, don't
603
* bother making these conditional (to avoid writes on
604
* the second or later invocation of the handler).
605
*/
606
gfn_range.arg = range->arg;
607
gfn_range.may_block = range->may_block;
608
/*
609
* HVA-based notifications aren't relevant to private
610
* mappings as they don't have a userspace mapping.
611
*/
612
gfn_range.attr_filter = KVM_FILTER_SHARED;
613
614
/*
615
* {gfn(page) | page intersects with [hva_start, hva_end)} =
616
* {gfn_start, gfn_start+1, ..., gfn_end-1}.
617
*/
618
gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
619
gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
620
gfn_range.slot = slot;
621
gfn_range.lockless = range->lockless;
622
623
if (!r.found_memslot) {
624
r.found_memslot = true;
625
if (!range->lockless) {
626
KVM_MMU_LOCK(kvm);
627
if (!IS_KVM_NULL_FN(range->on_lock))
628
range->on_lock(kvm);
629
630
if (IS_KVM_NULL_FN(range->handler))
631
goto mmu_unlock;
632
}
633
}
634
r.ret |= range->handler(kvm, &gfn_range);
635
}
636
}
637
638
if (range->flush_on_ret && r.ret)
639
kvm_flush_remote_tlbs(kvm);
640
641
mmu_unlock:
642
if (r.found_memslot && !range->lockless)
643
KVM_MMU_UNLOCK(kvm);
644
645
srcu_read_unlock(&kvm->srcu, idx);
646
647
return r;
648
}
649
650
static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn,
651
unsigned long start,
652
unsigned long end,
653
gfn_handler_t handler,
654
bool flush_on_ret)
655
{
656
struct kvm *kvm = mmu_notifier_to_kvm(mn);
657
const struct kvm_mmu_notifier_range range = {
658
.start = start,
659
.end = end,
660
.handler = handler,
661
.on_lock = (void *)kvm_null_fn,
662
.flush_on_ret = flush_on_ret,
663
.may_block = false,
664
.lockless = IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING),
665
};
666
667
return kvm_handle_hva_range(kvm, &range).ret;
668
}
669
670
static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn,
671
unsigned long start,
672
unsigned long end,
673
gfn_handler_t handler)
674
{
675
return kvm_age_hva_range(mn, start, end, handler, false);
676
}
677
678
void kvm_mmu_invalidate_begin(struct kvm *kvm)
679
{
680
lockdep_assert_held_write(&kvm->mmu_lock);
681
/*
682
* The count increase must become visible at unlock time as no
683
* spte can be established without taking the mmu_lock and
684
* count is also read inside the mmu_lock critical section.
685
*/
686
kvm->mmu_invalidate_in_progress++;
687
688
if (likely(kvm->mmu_invalidate_in_progress == 1)) {
689
kvm->mmu_invalidate_range_start = INVALID_GPA;
690
kvm->mmu_invalidate_range_end = INVALID_GPA;
691
}
692
}
693
694
void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
695
{
696
lockdep_assert_held_write(&kvm->mmu_lock);
697
698
WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
699
700
if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
701
kvm->mmu_invalidate_range_start = start;
702
kvm->mmu_invalidate_range_end = end;
703
} else {
704
/*
705
* Fully tracking multiple concurrent ranges has diminishing
706
* returns. Keep things simple and just find the minimal range
707
* which includes the current and new ranges. As there won't be
708
* enough information to subtract a range after its invalidate
709
* completes, any ranges invalidated concurrently will
710
* accumulate and persist until all outstanding invalidates
711
* complete.
712
*/
713
kvm->mmu_invalidate_range_start =
714
min(kvm->mmu_invalidate_range_start, start);
715
kvm->mmu_invalidate_range_end =
716
max(kvm->mmu_invalidate_range_end, end);
717
}
718
}
719
720
bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
721
{
722
kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
723
return kvm_unmap_gfn_range(kvm, range);
724
}
725
726
static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
727
const struct mmu_notifier_range *range)
728
{
729
struct kvm *kvm = mmu_notifier_to_kvm(mn);
730
const struct kvm_mmu_notifier_range hva_range = {
731
.start = range->start,
732
.end = range->end,
733
.handler = kvm_mmu_unmap_gfn_range,
734
.on_lock = kvm_mmu_invalidate_begin,
735
.flush_on_ret = true,
736
.may_block = mmu_notifier_range_blockable(range),
737
};
738
739
trace_kvm_unmap_hva_range(range->start, range->end);
740
741
/*
742
* Prevent memslot modification between range_start() and range_end()
743
* so that conditionally locking provides the same result in both
744
* functions. Without that guarantee, the mmu_invalidate_in_progress
745
* adjustments will be imbalanced.
746
*
747
* Pairs with the decrement in range_end().
748
*/
749
spin_lock(&kvm->mn_invalidate_lock);
750
kvm->mn_active_invalidate_count++;
751
spin_unlock(&kvm->mn_invalidate_lock);
752
753
/*
754
* Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
755
* before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
756
* each cache's lock. There are relatively few caches in existence at
757
* any given time, and the caches themselves can check for hva overlap,
758
* i.e. don't need to rely on memslot overlap checks for performance.
759
* Because this runs without holding mmu_lock, the pfn caches must use
760
* mn_active_invalidate_count (see above) instead of
761
* mmu_invalidate_in_progress.
762
*/
763
gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
764
765
/*
766
* If one or more memslots were found and thus zapped, notify arch code
767
* that guest memory has been reclaimed. This needs to be done *after*
768
* dropping mmu_lock, as x86's reclaim path is slooooow.
769
*/
770
if (kvm_handle_hva_range(kvm, &hva_range).found_memslot)
771
kvm_arch_guest_memory_reclaimed(kvm);
772
773
return 0;
774
}
775
776
void kvm_mmu_invalidate_end(struct kvm *kvm)
777
{
778
lockdep_assert_held_write(&kvm->mmu_lock);
779
780
/*
781
* This sequence increase will notify the kvm page fault that
782
* the page that is going to be mapped in the spte could have
783
* been freed.
784
*/
785
kvm->mmu_invalidate_seq++;
786
smp_wmb();
787
/*
788
* The above sequence increase must be visible before the
789
* below count decrease, which is ensured by the smp_wmb above
790
* in conjunction with the smp_rmb in mmu_invalidate_retry().
791
*/
792
kvm->mmu_invalidate_in_progress--;
793
KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
794
795
/*
796
* Assert that at least one range was added between start() and end().
797
* Not adding a range isn't fatal, but it is a KVM bug.
798
*/
799
WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
800
}
801
802
static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
803
const struct mmu_notifier_range *range)
804
{
805
struct kvm *kvm = mmu_notifier_to_kvm(mn);
806
const struct kvm_mmu_notifier_range hva_range = {
807
.start = range->start,
808
.end = range->end,
809
.handler = (void *)kvm_null_fn,
810
.on_lock = kvm_mmu_invalidate_end,
811
.flush_on_ret = false,
812
.may_block = mmu_notifier_range_blockable(range),
813
};
814
bool wake;
815
816
kvm_handle_hva_range(kvm, &hva_range);
817
818
/* Pairs with the increment in range_start(). */
819
spin_lock(&kvm->mn_invalidate_lock);
820
if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
821
--kvm->mn_active_invalidate_count;
822
wake = !kvm->mn_active_invalidate_count;
823
spin_unlock(&kvm->mn_invalidate_lock);
824
825
/*
826
* There can only be one waiter, since the wait happens under
827
* slots_lock.
828
*/
829
if (wake)
830
rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
831
}
832
833
static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
834
struct mm_struct *mm,
835
unsigned long start,
836
unsigned long end)
837
{
838
trace_kvm_age_hva(start, end);
839
840
return kvm_age_hva_range(mn, start, end, kvm_age_gfn,
841
!IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
842
}
843
844
static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
845
struct mm_struct *mm,
846
unsigned long start,
847
unsigned long end)
848
{
849
trace_kvm_age_hva(start, end);
850
851
/*
852
* Even though we do not flush TLB, this will still adversely
853
* affect performance on pre-Haswell Intel EPT, where there is
854
* no EPT Access Bit to clear so that we have to tear down EPT
855
* tables instead. If we find this unacceptable, we can always
856
* add a parameter to kvm_age_hva so that it effectively doesn't
857
* do anything on clear_young.
858
*
859
* Also note that currently we never issue secondary TLB flushes
860
* from clear_young, leaving this job up to the regular system
861
* cadence. If we find this inaccurate, we might come up with a
862
* more sophisticated heuristic later.
863
*/
864
return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn);
865
}
866
867
static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
868
struct mm_struct *mm,
869
unsigned long address)
870
{
871
trace_kvm_test_age_hva(address);
872
873
return kvm_age_hva_range_no_flush(mn, address, address + 1,
874
kvm_test_age_gfn);
875
}
876
877
static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
878
struct mm_struct *mm)
879
{
880
struct kvm *kvm = mmu_notifier_to_kvm(mn);
881
int idx;
882
883
idx = srcu_read_lock(&kvm->srcu);
884
kvm_flush_shadow_all(kvm);
885
srcu_read_unlock(&kvm->srcu, idx);
886
}
887
888
static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
889
.invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
890
.invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
891
.clear_flush_young = kvm_mmu_notifier_clear_flush_young,
892
.clear_young = kvm_mmu_notifier_clear_young,
893
.test_young = kvm_mmu_notifier_test_young,
894
.release = kvm_mmu_notifier_release,
895
};
896
897
static int kvm_init_mmu_notifier(struct kvm *kvm)
898
{
899
kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
900
return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
901
}
902
903
#else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
904
905
static int kvm_init_mmu_notifier(struct kvm *kvm)
906
{
907
return 0;
908
}
909
910
#endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
911
912
#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
913
static int kvm_pm_notifier_call(struct notifier_block *bl,
914
unsigned long state,
915
void *unused)
916
{
917
struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
918
919
return kvm_arch_pm_notifier(kvm, state);
920
}
921
922
static void kvm_init_pm_notifier(struct kvm *kvm)
923
{
924
kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
925
/* Suspend KVM before we suspend ftrace, RCU, etc. */
926
kvm->pm_notifier.priority = INT_MAX;
927
register_pm_notifier(&kvm->pm_notifier);
928
}
929
930
static void kvm_destroy_pm_notifier(struct kvm *kvm)
931
{
932
unregister_pm_notifier(&kvm->pm_notifier);
933
}
934
#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
935
static void kvm_init_pm_notifier(struct kvm *kvm)
936
{
937
}
938
939
static void kvm_destroy_pm_notifier(struct kvm *kvm)
940
{
941
}
942
#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
943
944
static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
945
{
946
if (!memslot->dirty_bitmap)
947
return;
948
949
vfree(memslot->dirty_bitmap);
950
memslot->dirty_bitmap = NULL;
951
}
952
953
/* This does not remove the slot from struct kvm_memslots data structures */
954
static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
955
{
956
if (slot->flags & KVM_MEM_GUEST_MEMFD)
957
kvm_gmem_unbind(slot);
958
959
kvm_destroy_dirty_bitmap(slot);
960
961
kvm_arch_free_memslot(kvm, slot);
962
963
kfree(slot);
964
}
965
966
static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
967
{
968
struct hlist_node *idnode;
969
struct kvm_memory_slot *memslot;
970
int bkt;
971
972
/*
973
* The same memslot objects live in both active and inactive sets,
974
* arbitrarily free using index '1' so the second invocation of this
975
* function isn't operating over a structure with dangling pointers
976
* (even though this function isn't actually touching them).
977
*/
978
if (!slots->node_idx)
979
return;
980
981
hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
982
kvm_free_memslot(kvm, memslot);
983
}
984
985
static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
986
{
987
switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
988
case KVM_STATS_TYPE_INSTANT:
989
return 0444;
990
case KVM_STATS_TYPE_CUMULATIVE:
991
case KVM_STATS_TYPE_PEAK:
992
default:
993
return 0644;
994
}
995
}
996
997
998
static void kvm_destroy_vm_debugfs(struct kvm *kvm)
999
{
1000
int i;
1001
int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1002
kvm_vcpu_stats_header.num_desc;
1003
1004
if (IS_ERR(kvm->debugfs_dentry))
1005
return;
1006
1007
debugfs_remove_recursive(kvm->debugfs_dentry);
1008
1009
if (kvm->debugfs_stat_data) {
1010
for (i = 0; i < kvm_debugfs_num_entries; i++)
1011
kfree(kvm->debugfs_stat_data[i]);
1012
kfree(kvm->debugfs_stat_data);
1013
}
1014
}
1015
1016
static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1017
{
1018
static DEFINE_MUTEX(kvm_debugfs_lock);
1019
struct dentry *dent;
1020
char dir_name[ITOA_MAX_LEN * 2];
1021
struct kvm_stat_data *stat_data;
1022
const struct _kvm_stats_desc *pdesc;
1023
int i, ret = -ENOMEM;
1024
int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1025
kvm_vcpu_stats_header.num_desc;
1026
1027
if (!debugfs_initialized())
1028
return 0;
1029
1030
snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1031
mutex_lock(&kvm_debugfs_lock);
1032
dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1033
if (dent) {
1034
pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1035
dput(dent);
1036
mutex_unlock(&kvm_debugfs_lock);
1037
return 0;
1038
}
1039
dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1040
mutex_unlock(&kvm_debugfs_lock);
1041
if (IS_ERR(dent))
1042
return 0;
1043
1044
kvm->debugfs_dentry = dent;
1045
kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1046
sizeof(*kvm->debugfs_stat_data),
1047
GFP_KERNEL_ACCOUNT);
1048
if (!kvm->debugfs_stat_data)
1049
goto out_err;
1050
1051
for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1052
pdesc = &kvm_vm_stats_desc[i];
1053
stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1054
if (!stat_data)
1055
goto out_err;
1056
1057
stat_data->kvm = kvm;
1058
stat_data->desc = pdesc;
1059
stat_data->kind = KVM_STAT_VM;
1060
kvm->debugfs_stat_data[i] = stat_data;
1061
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1062
kvm->debugfs_dentry, stat_data,
1063
&stat_fops_per_vm);
1064
}
1065
1066
for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1067
pdesc = &kvm_vcpu_stats_desc[i];
1068
stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1069
if (!stat_data)
1070
goto out_err;
1071
1072
stat_data->kvm = kvm;
1073
stat_data->desc = pdesc;
1074
stat_data->kind = KVM_STAT_VCPU;
1075
kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1076
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1077
kvm->debugfs_dentry, stat_data,
1078
&stat_fops_per_vm);
1079
}
1080
1081
kvm_arch_create_vm_debugfs(kvm);
1082
return 0;
1083
out_err:
1084
kvm_destroy_vm_debugfs(kvm);
1085
return ret;
1086
}
1087
1088
/*
1089
* Called just after removing the VM from the vm_list, but before doing any
1090
* other destruction.
1091
*/
1092
void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1093
{
1094
}
1095
1096
/*
1097
* Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1098
* be setup already, so we can create arch-specific debugfs entries under it.
1099
* Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1100
* a per-arch destroy interface is not needed.
1101
*/
1102
void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1103
{
1104
}
1105
1106
/* Called only on cleanup and destruction paths when there are no users. */
1107
static inline struct kvm_io_bus *kvm_get_bus_for_destruction(struct kvm *kvm,
1108
enum kvm_bus idx)
1109
{
1110
return rcu_dereference_protected(kvm->buses[idx],
1111
!refcount_read(&kvm->users_count));
1112
}
1113
1114
static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1115
{
1116
struct kvm *kvm = kvm_arch_alloc_vm();
1117
struct kvm_memslots *slots;
1118
int r, i, j;
1119
1120
if (!kvm)
1121
return ERR_PTR(-ENOMEM);
1122
1123
KVM_MMU_LOCK_INIT(kvm);
1124
mmgrab(current->mm);
1125
kvm->mm = current->mm;
1126
kvm_eventfd_init(kvm);
1127
mutex_init(&kvm->lock);
1128
mutex_init(&kvm->irq_lock);
1129
mutex_init(&kvm->slots_lock);
1130
mutex_init(&kvm->slots_arch_lock);
1131
spin_lock_init(&kvm->mn_invalidate_lock);
1132
rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1133
xa_init(&kvm->vcpu_array);
1134
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1135
xa_init(&kvm->mem_attr_array);
1136
#endif
1137
1138
INIT_LIST_HEAD(&kvm->gpc_list);
1139
spin_lock_init(&kvm->gpc_lock);
1140
1141
INIT_LIST_HEAD(&kvm->devices);
1142
kvm->max_vcpus = KVM_MAX_VCPUS;
1143
1144
BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1145
1146
/*
1147
* Force subsequent debugfs file creations to fail if the VM directory
1148
* is not created (by kvm_create_vm_debugfs()).
1149
*/
1150
kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1151
1152
snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1153
task_pid_nr(current));
1154
1155
r = -ENOMEM;
1156
if (init_srcu_struct(&kvm->srcu))
1157
goto out_err_no_srcu;
1158
if (init_srcu_struct(&kvm->irq_srcu))
1159
goto out_err_no_irq_srcu;
1160
1161
r = kvm_init_irq_routing(kvm);
1162
if (r)
1163
goto out_err_no_irq_routing;
1164
1165
refcount_set(&kvm->users_count, 1);
1166
1167
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1168
for (j = 0; j < 2; j++) {
1169
slots = &kvm->__memslots[i][j];
1170
1171
atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1172
slots->hva_tree = RB_ROOT_CACHED;
1173
slots->gfn_tree = RB_ROOT;
1174
hash_init(slots->id_hash);
1175
slots->node_idx = j;
1176
1177
/* Generations must be different for each address space. */
1178
slots->generation = i;
1179
}
1180
1181
rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1182
}
1183
1184
r = -ENOMEM;
1185
for (i = 0; i < KVM_NR_BUSES; i++) {
1186
rcu_assign_pointer(kvm->buses[i],
1187
kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1188
if (!kvm->buses[i])
1189
goto out_err_no_arch_destroy_vm;
1190
}
1191
1192
r = kvm_arch_init_vm(kvm, type);
1193
if (r)
1194
goto out_err_no_arch_destroy_vm;
1195
1196
r = kvm_enable_virtualization();
1197
if (r)
1198
goto out_err_no_disable;
1199
1200
#ifdef CONFIG_HAVE_KVM_IRQCHIP
1201
INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1202
#endif
1203
1204
r = kvm_init_mmu_notifier(kvm);
1205
if (r)
1206
goto out_err_no_mmu_notifier;
1207
1208
r = kvm_coalesced_mmio_init(kvm);
1209
if (r < 0)
1210
goto out_no_coalesced_mmio;
1211
1212
r = kvm_create_vm_debugfs(kvm, fdname);
1213
if (r)
1214
goto out_err_no_debugfs;
1215
1216
mutex_lock(&kvm_lock);
1217
list_add(&kvm->vm_list, &vm_list);
1218
mutex_unlock(&kvm_lock);
1219
1220
preempt_notifier_inc();
1221
kvm_init_pm_notifier(kvm);
1222
1223
return kvm;
1224
1225
out_err_no_debugfs:
1226
kvm_coalesced_mmio_free(kvm);
1227
out_no_coalesced_mmio:
1228
#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1229
if (kvm->mmu_notifier.ops)
1230
mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1231
#endif
1232
out_err_no_mmu_notifier:
1233
kvm_disable_virtualization();
1234
out_err_no_disable:
1235
kvm_arch_destroy_vm(kvm);
1236
out_err_no_arch_destroy_vm:
1237
WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1238
for (i = 0; i < KVM_NR_BUSES; i++)
1239
kfree(kvm_get_bus_for_destruction(kvm, i));
1240
kvm_free_irq_routing(kvm);
1241
out_err_no_irq_routing:
1242
cleanup_srcu_struct(&kvm->irq_srcu);
1243
out_err_no_irq_srcu:
1244
cleanup_srcu_struct(&kvm->srcu);
1245
out_err_no_srcu:
1246
kvm_arch_free_vm(kvm);
1247
mmdrop(current->mm);
1248
return ERR_PTR(r);
1249
}
1250
1251
static void kvm_destroy_devices(struct kvm *kvm)
1252
{
1253
struct kvm_device *dev, *tmp;
1254
1255
/*
1256
* We do not need to take the kvm->lock here, because nobody else
1257
* has a reference to the struct kvm at this point and therefore
1258
* cannot access the devices list anyhow.
1259
*
1260
* The device list is generally managed as an rculist, but list_del()
1261
* is used intentionally here. If a bug in KVM introduced a reader that
1262
* was not backed by a reference on the kvm struct, the hope is that
1263
* it'd consume the poisoned forward pointer instead of suffering a
1264
* use-after-free, even though this cannot be guaranteed.
1265
*/
1266
list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1267
list_del(&dev->vm_node);
1268
dev->ops->destroy(dev);
1269
}
1270
}
1271
1272
static void kvm_destroy_vm(struct kvm *kvm)
1273
{
1274
int i;
1275
struct mm_struct *mm = kvm->mm;
1276
1277
kvm_destroy_pm_notifier(kvm);
1278
kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1279
kvm_destroy_vm_debugfs(kvm);
1280
mutex_lock(&kvm_lock);
1281
list_del(&kvm->vm_list);
1282
mutex_unlock(&kvm_lock);
1283
kvm_arch_pre_destroy_vm(kvm);
1284
1285
kvm_free_irq_routing(kvm);
1286
for (i = 0; i < KVM_NR_BUSES; i++) {
1287
struct kvm_io_bus *bus = kvm_get_bus_for_destruction(kvm, i);
1288
1289
if (bus)
1290
kvm_io_bus_destroy(bus);
1291
kvm->buses[i] = NULL;
1292
}
1293
kvm_coalesced_mmio_free(kvm);
1294
#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1295
mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1296
/*
1297
* At this point, pending calls to invalidate_range_start()
1298
* have completed but no more MMU notifiers will run, so
1299
* mn_active_invalidate_count may remain unbalanced.
1300
* No threads can be waiting in kvm_swap_active_memslots() as the
1301
* last reference on KVM has been dropped, but freeing
1302
* memslots would deadlock without this manual intervention.
1303
*
1304
* If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1305
* notifier between a start() and end(), then there shouldn't be any
1306
* in-progress invalidations.
1307
*/
1308
WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1309
if (kvm->mn_active_invalidate_count)
1310
kvm->mn_active_invalidate_count = 0;
1311
else
1312
WARN_ON(kvm->mmu_invalidate_in_progress);
1313
#else
1314
kvm_flush_shadow_all(kvm);
1315
#endif
1316
kvm_arch_destroy_vm(kvm);
1317
kvm_destroy_devices(kvm);
1318
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1319
kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1320
kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1321
}
1322
cleanup_srcu_struct(&kvm->irq_srcu);
1323
srcu_barrier(&kvm->srcu);
1324
cleanup_srcu_struct(&kvm->srcu);
1325
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1326
xa_destroy(&kvm->mem_attr_array);
1327
#endif
1328
kvm_arch_free_vm(kvm);
1329
preempt_notifier_dec();
1330
kvm_disable_virtualization();
1331
mmdrop(mm);
1332
}
1333
1334
void kvm_get_kvm(struct kvm *kvm)
1335
{
1336
refcount_inc(&kvm->users_count);
1337
}
1338
EXPORT_SYMBOL_GPL(kvm_get_kvm);
1339
1340
/*
1341
* Make sure the vm is not during destruction, which is a safe version of
1342
* kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1343
*/
1344
bool kvm_get_kvm_safe(struct kvm *kvm)
1345
{
1346
return refcount_inc_not_zero(&kvm->users_count);
1347
}
1348
EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1349
1350
void kvm_put_kvm(struct kvm *kvm)
1351
{
1352
if (refcount_dec_and_test(&kvm->users_count))
1353
kvm_destroy_vm(kvm);
1354
}
1355
EXPORT_SYMBOL_GPL(kvm_put_kvm);
1356
1357
/*
1358
* Used to put a reference that was taken on behalf of an object associated
1359
* with a user-visible file descriptor, e.g. a vcpu or device, if installation
1360
* of the new file descriptor fails and the reference cannot be transferred to
1361
* its final owner. In such cases, the caller is still actively using @kvm and
1362
* will fail miserably if the refcount unexpectedly hits zero.
1363
*/
1364
void kvm_put_kvm_no_destroy(struct kvm *kvm)
1365
{
1366
WARN_ON(refcount_dec_and_test(&kvm->users_count));
1367
}
1368
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_put_kvm_no_destroy);
1369
1370
static int kvm_vm_release(struct inode *inode, struct file *filp)
1371
{
1372
struct kvm *kvm = filp->private_data;
1373
1374
kvm_irqfd_release(kvm);
1375
1376
kvm_put_kvm(kvm);
1377
return 0;
1378
}
1379
1380
int kvm_trylock_all_vcpus(struct kvm *kvm)
1381
{
1382
struct kvm_vcpu *vcpu;
1383
unsigned long i, j;
1384
1385
lockdep_assert_held(&kvm->lock);
1386
1387
kvm_for_each_vcpu(i, vcpu, kvm)
1388
if (!mutex_trylock_nest_lock(&vcpu->mutex, &kvm->lock))
1389
goto out_unlock;
1390
return 0;
1391
1392
out_unlock:
1393
kvm_for_each_vcpu(j, vcpu, kvm) {
1394
if (i == j)
1395
break;
1396
mutex_unlock(&vcpu->mutex);
1397
}
1398
return -EINTR;
1399
}
1400
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_trylock_all_vcpus);
1401
1402
int kvm_lock_all_vcpus(struct kvm *kvm)
1403
{
1404
struct kvm_vcpu *vcpu;
1405
unsigned long i, j;
1406
int r;
1407
1408
lockdep_assert_held(&kvm->lock);
1409
1410
kvm_for_each_vcpu(i, vcpu, kvm) {
1411
r = mutex_lock_killable_nest_lock(&vcpu->mutex, &kvm->lock);
1412
if (r)
1413
goto out_unlock;
1414
}
1415
return 0;
1416
1417
out_unlock:
1418
kvm_for_each_vcpu(j, vcpu, kvm) {
1419
if (i == j)
1420
break;
1421
mutex_unlock(&vcpu->mutex);
1422
}
1423
return r;
1424
}
1425
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lock_all_vcpus);
1426
1427
void kvm_unlock_all_vcpus(struct kvm *kvm)
1428
{
1429
struct kvm_vcpu *vcpu;
1430
unsigned long i;
1431
1432
lockdep_assert_held(&kvm->lock);
1433
1434
kvm_for_each_vcpu(i, vcpu, kvm)
1435
mutex_unlock(&vcpu->mutex);
1436
}
1437
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_unlock_all_vcpus);
1438
1439
/*
1440
* Allocation size is twice as large as the actual dirty bitmap size.
1441
* See kvm_vm_ioctl_get_dirty_log() why this is needed.
1442
*/
1443
static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1444
{
1445
unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1446
1447
memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1448
if (!memslot->dirty_bitmap)
1449
return -ENOMEM;
1450
1451
return 0;
1452
}
1453
1454
static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1455
{
1456
struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1457
int node_idx_inactive = active->node_idx ^ 1;
1458
1459
return &kvm->__memslots[as_id][node_idx_inactive];
1460
}
1461
1462
/*
1463
* Helper to get the address space ID when one of memslot pointers may be NULL.
1464
* This also serves as a sanity that at least one of the pointers is non-NULL,
1465
* and that their address space IDs don't diverge.
1466
*/
1467
static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1468
struct kvm_memory_slot *b)
1469
{
1470
if (WARN_ON_ONCE(!a && !b))
1471
return 0;
1472
1473
if (!a)
1474
return b->as_id;
1475
if (!b)
1476
return a->as_id;
1477
1478
WARN_ON_ONCE(a->as_id != b->as_id);
1479
return a->as_id;
1480
}
1481
1482
static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1483
struct kvm_memory_slot *slot)
1484
{
1485
struct rb_root *gfn_tree = &slots->gfn_tree;
1486
struct rb_node **node, *parent;
1487
int idx = slots->node_idx;
1488
1489
parent = NULL;
1490
for (node = &gfn_tree->rb_node; *node; ) {
1491
struct kvm_memory_slot *tmp;
1492
1493
tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1494
parent = *node;
1495
if (slot->base_gfn < tmp->base_gfn)
1496
node = &(*node)->rb_left;
1497
else if (slot->base_gfn > tmp->base_gfn)
1498
node = &(*node)->rb_right;
1499
else
1500
BUG();
1501
}
1502
1503
rb_link_node(&slot->gfn_node[idx], parent, node);
1504
rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1505
}
1506
1507
static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1508
struct kvm_memory_slot *slot)
1509
{
1510
rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1511
}
1512
1513
static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1514
struct kvm_memory_slot *old,
1515
struct kvm_memory_slot *new)
1516
{
1517
int idx = slots->node_idx;
1518
1519
WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1520
1521
rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1522
&slots->gfn_tree);
1523
}
1524
1525
/*
1526
* Replace @old with @new in the inactive memslots.
1527
*
1528
* With NULL @old this simply adds @new.
1529
* With NULL @new this simply removes @old.
1530
*
1531
* If @new is non-NULL its hva_node[slots_idx] range has to be set
1532
* appropriately.
1533
*/
1534
static void kvm_replace_memslot(struct kvm *kvm,
1535
struct kvm_memory_slot *old,
1536
struct kvm_memory_slot *new)
1537
{
1538
int as_id = kvm_memslots_get_as_id(old, new);
1539
struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1540
int idx = slots->node_idx;
1541
1542
if (old) {
1543
hash_del(&old->id_node[idx]);
1544
interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1545
1546
if ((long)old == atomic_long_read(&slots->last_used_slot))
1547
atomic_long_set(&slots->last_used_slot, (long)new);
1548
1549
if (!new) {
1550
kvm_erase_gfn_node(slots, old);
1551
return;
1552
}
1553
}
1554
1555
/*
1556
* Initialize @new's hva range. Do this even when replacing an @old
1557
* slot, kvm_copy_memslot() deliberately does not touch node data.
1558
*/
1559
new->hva_node[idx].start = new->userspace_addr;
1560
new->hva_node[idx].last = new->userspace_addr +
1561
(new->npages << PAGE_SHIFT) - 1;
1562
1563
/*
1564
* (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1565
* hva_node needs to be swapped with remove+insert even though hva can't
1566
* change when replacing an existing slot.
1567
*/
1568
hash_add(slots->id_hash, &new->id_node[idx], new->id);
1569
interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1570
1571
/*
1572
* If the memslot gfn is unchanged, rb_replace_node() can be used to
1573
* switch the node in the gfn tree instead of removing the old and
1574
* inserting the new as two separate operations. Replacement is a
1575
* single O(1) operation versus two O(log(n)) operations for
1576
* remove+insert.
1577
*/
1578
if (old && old->base_gfn == new->base_gfn) {
1579
kvm_replace_gfn_node(slots, old, new);
1580
} else {
1581
if (old)
1582
kvm_erase_gfn_node(slots, old);
1583
kvm_insert_gfn_node(slots, new);
1584
}
1585
}
1586
1587
/*
1588
* Flags that do not access any of the extra space of struct
1589
* kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1590
* only allows these.
1591
*/
1592
#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1593
(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1594
1595
static int check_memory_region_flags(struct kvm *kvm,
1596
const struct kvm_userspace_memory_region2 *mem)
1597
{
1598
u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1599
1600
if (IS_ENABLED(CONFIG_KVM_GUEST_MEMFD))
1601
valid_flags |= KVM_MEM_GUEST_MEMFD;
1602
1603
/* Dirty logging private memory is not currently supported. */
1604
if (mem->flags & KVM_MEM_GUEST_MEMFD)
1605
valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1606
1607
/*
1608
* GUEST_MEMFD is incompatible with read-only memslots, as writes to
1609
* read-only memslots have emulated MMIO, not page fault, semantics,
1610
* and KVM doesn't allow emulated MMIO for private memory.
1611
*/
1612
if (kvm_arch_has_readonly_mem(kvm) &&
1613
!(mem->flags & KVM_MEM_GUEST_MEMFD))
1614
valid_flags |= KVM_MEM_READONLY;
1615
1616
if (mem->flags & ~valid_flags)
1617
return -EINVAL;
1618
1619
return 0;
1620
}
1621
1622
static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1623
{
1624
struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1625
1626
/* Grab the generation from the activate memslots. */
1627
u64 gen = __kvm_memslots(kvm, as_id)->generation;
1628
1629
WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1630
slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1631
1632
/*
1633
* Do not store the new memslots while there are invalidations in
1634
* progress, otherwise the locking in invalidate_range_start and
1635
* invalidate_range_end will be unbalanced.
1636
*/
1637
spin_lock(&kvm->mn_invalidate_lock);
1638
prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1639
while (kvm->mn_active_invalidate_count) {
1640
set_current_state(TASK_UNINTERRUPTIBLE);
1641
spin_unlock(&kvm->mn_invalidate_lock);
1642
schedule();
1643
spin_lock(&kvm->mn_invalidate_lock);
1644
}
1645
finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1646
rcu_assign_pointer(kvm->memslots[as_id], slots);
1647
spin_unlock(&kvm->mn_invalidate_lock);
1648
1649
/*
1650
* Acquired in kvm_set_memslot. Must be released before synchronize
1651
* SRCU below in order to avoid deadlock with another thread
1652
* acquiring the slots_arch_lock in an srcu critical section.
1653
*/
1654
mutex_unlock(&kvm->slots_arch_lock);
1655
1656
synchronize_srcu_expedited(&kvm->srcu);
1657
1658
/*
1659
* Increment the new memslot generation a second time, dropping the
1660
* update in-progress flag and incrementing the generation based on
1661
* the number of address spaces. This provides a unique and easily
1662
* identifiable generation number while the memslots are in flux.
1663
*/
1664
gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1665
1666
/*
1667
* Generations must be unique even across address spaces. We do not need
1668
* a global counter for that, instead the generation space is evenly split
1669
* across address spaces. For example, with two address spaces, address
1670
* space 0 will use generations 0, 2, 4, ... while address space 1 will
1671
* use generations 1, 3, 5, ...
1672
*/
1673
gen += kvm_arch_nr_memslot_as_ids(kvm);
1674
1675
kvm_arch_memslots_updated(kvm, gen);
1676
1677
slots->generation = gen;
1678
}
1679
1680
static int kvm_prepare_memory_region(struct kvm *kvm,
1681
const struct kvm_memory_slot *old,
1682
struct kvm_memory_slot *new,
1683
enum kvm_mr_change change)
1684
{
1685
int r;
1686
1687
/*
1688
* If dirty logging is disabled, nullify the bitmap; the old bitmap
1689
* will be freed on "commit". If logging is enabled in both old and
1690
* new, reuse the existing bitmap. If logging is enabled only in the
1691
* new and KVM isn't using a ring buffer, allocate and initialize a
1692
* new bitmap.
1693
*/
1694
if (change != KVM_MR_DELETE) {
1695
if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1696
new->dirty_bitmap = NULL;
1697
else if (old && old->dirty_bitmap)
1698
new->dirty_bitmap = old->dirty_bitmap;
1699
else if (kvm_use_dirty_bitmap(kvm)) {
1700
r = kvm_alloc_dirty_bitmap(new);
1701
if (r)
1702
return r;
1703
1704
if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1705
bitmap_set(new->dirty_bitmap, 0, new->npages);
1706
}
1707
}
1708
1709
r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1710
1711
/* Free the bitmap on failure if it was allocated above. */
1712
if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1713
kvm_destroy_dirty_bitmap(new);
1714
1715
return r;
1716
}
1717
1718
static void kvm_commit_memory_region(struct kvm *kvm,
1719
struct kvm_memory_slot *old,
1720
const struct kvm_memory_slot *new,
1721
enum kvm_mr_change change)
1722
{
1723
int old_flags = old ? old->flags : 0;
1724
int new_flags = new ? new->flags : 0;
1725
/*
1726
* Update the total number of memslot pages before calling the arch
1727
* hook so that architectures can consume the result directly.
1728
*/
1729
if (change == KVM_MR_DELETE)
1730
kvm->nr_memslot_pages -= old->npages;
1731
else if (change == KVM_MR_CREATE)
1732
kvm->nr_memslot_pages += new->npages;
1733
1734
if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1735
int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1736
atomic_set(&kvm->nr_memslots_dirty_logging,
1737
atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1738
}
1739
1740
kvm_arch_commit_memory_region(kvm, old, new, change);
1741
1742
switch (change) {
1743
case KVM_MR_CREATE:
1744
/* Nothing more to do. */
1745
break;
1746
case KVM_MR_DELETE:
1747
/* Free the old memslot and all its metadata. */
1748
kvm_free_memslot(kvm, old);
1749
break;
1750
case KVM_MR_MOVE:
1751
case KVM_MR_FLAGS_ONLY:
1752
/*
1753
* Free the dirty bitmap as needed; the below check encompasses
1754
* both the flags and whether a ring buffer is being used)
1755
*/
1756
if (old->dirty_bitmap && !new->dirty_bitmap)
1757
kvm_destroy_dirty_bitmap(old);
1758
1759
/*
1760
* The final quirk. Free the detached, old slot, but only its
1761
* memory, not any metadata. Metadata, including arch specific
1762
* data, may be reused by @new.
1763
*/
1764
kfree(old);
1765
break;
1766
default:
1767
BUG();
1768
}
1769
}
1770
1771
/*
1772
* Activate @new, which must be installed in the inactive slots by the caller,
1773
* by swapping the active slots and then propagating @new to @old once @old is
1774
* unreachable and can be safely modified.
1775
*
1776
* With NULL @old this simply adds @new to @active (while swapping the sets).
1777
* With NULL @new this simply removes @old from @active and frees it
1778
* (while also swapping the sets).
1779
*/
1780
static void kvm_activate_memslot(struct kvm *kvm,
1781
struct kvm_memory_slot *old,
1782
struct kvm_memory_slot *new)
1783
{
1784
int as_id = kvm_memslots_get_as_id(old, new);
1785
1786
kvm_swap_active_memslots(kvm, as_id);
1787
1788
/* Propagate the new memslot to the now inactive memslots. */
1789
kvm_replace_memslot(kvm, old, new);
1790
}
1791
1792
static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1793
const struct kvm_memory_slot *src)
1794
{
1795
dest->base_gfn = src->base_gfn;
1796
dest->npages = src->npages;
1797
dest->dirty_bitmap = src->dirty_bitmap;
1798
dest->arch = src->arch;
1799
dest->userspace_addr = src->userspace_addr;
1800
dest->flags = src->flags;
1801
dest->id = src->id;
1802
dest->as_id = src->as_id;
1803
}
1804
1805
static void kvm_invalidate_memslot(struct kvm *kvm,
1806
struct kvm_memory_slot *old,
1807
struct kvm_memory_slot *invalid_slot)
1808
{
1809
/*
1810
* Mark the current slot INVALID. As with all memslot modifications,
1811
* this must be done on an unreachable slot to avoid modifying the
1812
* current slot in the active tree.
1813
*/
1814
kvm_copy_memslot(invalid_slot, old);
1815
invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1816
kvm_replace_memslot(kvm, old, invalid_slot);
1817
1818
/*
1819
* Activate the slot that is now marked INVALID, but don't propagate
1820
* the slot to the now inactive slots. The slot is either going to be
1821
* deleted or recreated as a new slot.
1822
*/
1823
kvm_swap_active_memslots(kvm, old->as_id);
1824
1825
/*
1826
* From this point no new shadow pages pointing to a deleted, or moved,
1827
* memslot will be created. Validation of sp->gfn happens in:
1828
* - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1829
* - kvm_is_visible_gfn (mmu_check_root)
1830
*/
1831
kvm_arch_flush_shadow_memslot(kvm, old);
1832
kvm_arch_guest_memory_reclaimed(kvm);
1833
1834
/* Was released by kvm_swap_active_memslots(), reacquire. */
1835
mutex_lock(&kvm->slots_arch_lock);
1836
1837
/*
1838
* Copy the arch-specific field of the newly-installed slot back to the
1839
* old slot as the arch data could have changed between releasing
1840
* slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1841
* above. Writers are required to retrieve memslots *after* acquiring
1842
* slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1843
*/
1844
old->arch = invalid_slot->arch;
1845
}
1846
1847
static void kvm_create_memslot(struct kvm *kvm,
1848
struct kvm_memory_slot *new)
1849
{
1850
/* Add the new memslot to the inactive set and activate. */
1851
kvm_replace_memslot(kvm, NULL, new);
1852
kvm_activate_memslot(kvm, NULL, new);
1853
}
1854
1855
static void kvm_delete_memslot(struct kvm *kvm,
1856
struct kvm_memory_slot *old,
1857
struct kvm_memory_slot *invalid_slot)
1858
{
1859
/*
1860
* Remove the old memslot (in the inactive memslots) by passing NULL as
1861
* the "new" slot, and for the invalid version in the active slots.
1862
*/
1863
kvm_replace_memslot(kvm, old, NULL);
1864
kvm_activate_memslot(kvm, invalid_slot, NULL);
1865
}
1866
1867
static void kvm_move_memslot(struct kvm *kvm,
1868
struct kvm_memory_slot *old,
1869
struct kvm_memory_slot *new,
1870
struct kvm_memory_slot *invalid_slot)
1871
{
1872
/*
1873
* Replace the old memslot in the inactive slots, and then swap slots
1874
* and replace the current INVALID with the new as well.
1875
*/
1876
kvm_replace_memslot(kvm, old, new);
1877
kvm_activate_memslot(kvm, invalid_slot, new);
1878
}
1879
1880
static void kvm_update_flags_memslot(struct kvm *kvm,
1881
struct kvm_memory_slot *old,
1882
struct kvm_memory_slot *new)
1883
{
1884
/*
1885
* Similar to the MOVE case, but the slot doesn't need to be zapped as
1886
* an intermediate step. Instead, the old memslot is simply replaced
1887
* with a new, updated copy in both memslot sets.
1888
*/
1889
kvm_replace_memslot(kvm, old, new);
1890
kvm_activate_memslot(kvm, old, new);
1891
}
1892
1893
static int kvm_set_memslot(struct kvm *kvm,
1894
struct kvm_memory_slot *old,
1895
struct kvm_memory_slot *new,
1896
enum kvm_mr_change change)
1897
{
1898
struct kvm_memory_slot *invalid_slot;
1899
int r;
1900
1901
/*
1902
* Released in kvm_swap_active_memslots().
1903
*
1904
* Must be held from before the current memslots are copied until after
1905
* the new memslots are installed with rcu_assign_pointer, then
1906
* released before the synchronize srcu in kvm_swap_active_memslots().
1907
*
1908
* When modifying memslots outside of the slots_lock, must be held
1909
* before reading the pointer to the current memslots until after all
1910
* changes to those memslots are complete.
1911
*
1912
* These rules ensure that installing new memslots does not lose
1913
* changes made to the previous memslots.
1914
*/
1915
mutex_lock(&kvm->slots_arch_lock);
1916
1917
/*
1918
* Invalidate the old slot if it's being deleted or moved. This is
1919
* done prior to actually deleting/moving the memslot to allow vCPUs to
1920
* continue running by ensuring there are no mappings or shadow pages
1921
* for the memslot when it is deleted/moved. Without pre-invalidation
1922
* (and without a lock), a window would exist between effecting the
1923
* delete/move and committing the changes in arch code where KVM or a
1924
* guest could access a non-existent memslot.
1925
*
1926
* Modifications are done on a temporary, unreachable slot. The old
1927
* slot needs to be preserved in case a later step fails and the
1928
* invalidation needs to be reverted.
1929
*/
1930
if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1931
invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1932
if (!invalid_slot) {
1933
mutex_unlock(&kvm->slots_arch_lock);
1934
return -ENOMEM;
1935
}
1936
kvm_invalidate_memslot(kvm, old, invalid_slot);
1937
}
1938
1939
r = kvm_prepare_memory_region(kvm, old, new, change);
1940
if (r) {
1941
/*
1942
* For DELETE/MOVE, revert the above INVALID change. No
1943
* modifications required since the original slot was preserved
1944
* in the inactive slots. Changing the active memslots also
1945
* release slots_arch_lock.
1946
*/
1947
if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1948
kvm_activate_memslot(kvm, invalid_slot, old);
1949
kfree(invalid_slot);
1950
} else {
1951
mutex_unlock(&kvm->slots_arch_lock);
1952
}
1953
return r;
1954
}
1955
1956
/*
1957
* For DELETE and MOVE, the working slot is now active as the INVALID
1958
* version of the old slot. MOVE is particularly special as it reuses
1959
* the old slot and returns a copy of the old slot (in working_slot).
1960
* For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1961
* old slot is detached but otherwise preserved.
1962
*/
1963
if (change == KVM_MR_CREATE)
1964
kvm_create_memslot(kvm, new);
1965
else if (change == KVM_MR_DELETE)
1966
kvm_delete_memslot(kvm, old, invalid_slot);
1967
else if (change == KVM_MR_MOVE)
1968
kvm_move_memslot(kvm, old, new, invalid_slot);
1969
else if (change == KVM_MR_FLAGS_ONLY)
1970
kvm_update_flags_memslot(kvm, old, new);
1971
else
1972
BUG();
1973
1974
/* Free the temporary INVALID slot used for DELETE and MOVE. */
1975
if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1976
kfree(invalid_slot);
1977
1978
/*
1979
* No need to refresh new->arch, changes after dropping slots_arch_lock
1980
* will directly hit the final, active memslot. Architectures are
1981
* responsible for knowing that new->arch may be stale.
1982
*/
1983
kvm_commit_memory_region(kvm, old, new, change);
1984
1985
return 0;
1986
}
1987
1988
static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1989
gfn_t start, gfn_t end)
1990
{
1991
struct kvm_memslot_iter iter;
1992
1993
kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1994
if (iter.slot->id != id)
1995
return true;
1996
}
1997
1998
return false;
1999
}
2000
2001
static int kvm_set_memory_region(struct kvm *kvm,
2002
const struct kvm_userspace_memory_region2 *mem)
2003
{
2004
struct kvm_memory_slot *old, *new;
2005
struct kvm_memslots *slots;
2006
enum kvm_mr_change change;
2007
unsigned long npages;
2008
gfn_t base_gfn;
2009
int as_id, id;
2010
int r;
2011
2012
lockdep_assert_held(&kvm->slots_lock);
2013
2014
r = check_memory_region_flags(kvm, mem);
2015
if (r)
2016
return r;
2017
2018
as_id = mem->slot >> 16;
2019
id = (u16)mem->slot;
2020
2021
/* General sanity checks */
2022
if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2023
(mem->memory_size != (unsigned long)mem->memory_size))
2024
return -EINVAL;
2025
if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2026
return -EINVAL;
2027
/* We can read the guest memory with __xxx_user() later on. */
2028
if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2029
(mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2030
!access_ok((void __user *)(unsigned long)mem->userspace_addr,
2031
mem->memory_size))
2032
return -EINVAL;
2033
if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2034
(mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2035
mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2036
return -EINVAL;
2037
if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2038
return -EINVAL;
2039
if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2040
return -EINVAL;
2041
2042
/*
2043
* The size of userspace-defined memory regions is restricted in order
2044
* to play nice with dirty bitmap operations, which are indexed with an
2045
* "unsigned int". KVM's internal memory regions don't support dirty
2046
* logging, and so are exempt.
2047
*/
2048
if (id < KVM_USER_MEM_SLOTS &&
2049
(mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2050
return -EINVAL;
2051
2052
slots = __kvm_memslots(kvm, as_id);
2053
2054
/*
2055
* Note, the old memslot (and the pointer itself!) may be invalidated
2056
* and/or destroyed by kvm_set_memslot().
2057
*/
2058
old = id_to_memslot(slots, id);
2059
2060
if (!mem->memory_size) {
2061
if (!old || !old->npages)
2062
return -EINVAL;
2063
2064
if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2065
return -EIO;
2066
2067
return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2068
}
2069
2070
base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2071
npages = (mem->memory_size >> PAGE_SHIFT);
2072
2073
if (!old || !old->npages) {
2074
change = KVM_MR_CREATE;
2075
2076
/*
2077
* To simplify KVM internals, the total number of pages across
2078
* all memslots must fit in an unsigned long.
2079
*/
2080
if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2081
return -EINVAL;
2082
} else { /* Modify an existing slot. */
2083
/* Private memslots are immutable, they can only be deleted. */
2084
if (mem->flags & KVM_MEM_GUEST_MEMFD)
2085
return -EINVAL;
2086
if ((mem->userspace_addr != old->userspace_addr) ||
2087
(npages != old->npages) ||
2088
((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2089
return -EINVAL;
2090
2091
if (base_gfn != old->base_gfn)
2092
change = KVM_MR_MOVE;
2093
else if (mem->flags != old->flags)
2094
change = KVM_MR_FLAGS_ONLY;
2095
else /* Nothing to change. */
2096
return 0;
2097
}
2098
2099
if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2100
kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2101
return -EEXIST;
2102
2103
/* Allocate a slot that will persist in the memslot. */
2104
new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2105
if (!new)
2106
return -ENOMEM;
2107
2108
new->as_id = as_id;
2109
new->id = id;
2110
new->base_gfn = base_gfn;
2111
new->npages = npages;
2112
new->flags = mem->flags;
2113
new->userspace_addr = mem->userspace_addr;
2114
if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2115
r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2116
if (r)
2117
goto out;
2118
}
2119
2120
r = kvm_set_memslot(kvm, old, new, change);
2121
if (r)
2122
goto out_unbind;
2123
2124
return 0;
2125
2126
out_unbind:
2127
if (mem->flags & KVM_MEM_GUEST_MEMFD)
2128
kvm_gmem_unbind(new);
2129
out:
2130
kfree(new);
2131
return r;
2132
}
2133
2134
int kvm_set_internal_memslot(struct kvm *kvm,
2135
const struct kvm_userspace_memory_region2 *mem)
2136
{
2137
if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS))
2138
return -EINVAL;
2139
2140
if (WARN_ON_ONCE(mem->flags))
2141
return -EINVAL;
2142
2143
return kvm_set_memory_region(kvm, mem);
2144
}
2145
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_internal_memslot);
2146
2147
static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2148
struct kvm_userspace_memory_region2 *mem)
2149
{
2150
if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2151
return -EINVAL;
2152
2153
guard(mutex)(&kvm->slots_lock);
2154
return kvm_set_memory_region(kvm, mem);
2155
}
2156
2157
#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2158
/**
2159
* kvm_get_dirty_log - get a snapshot of dirty pages
2160
* @kvm: pointer to kvm instance
2161
* @log: slot id and address to which we copy the log
2162
* @is_dirty: set to '1' if any dirty pages were found
2163
* @memslot: set to the associated memslot, always valid on success
2164
*/
2165
int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2166
int *is_dirty, struct kvm_memory_slot **memslot)
2167
{
2168
struct kvm_memslots *slots;
2169
int i, as_id, id;
2170
unsigned long n;
2171
unsigned long any = 0;
2172
2173
/* Dirty ring tracking may be exclusive to dirty log tracking */
2174
if (!kvm_use_dirty_bitmap(kvm))
2175
return -ENXIO;
2176
2177
*memslot = NULL;
2178
*is_dirty = 0;
2179
2180
as_id = log->slot >> 16;
2181
id = (u16)log->slot;
2182
if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2183
return -EINVAL;
2184
2185
slots = __kvm_memslots(kvm, as_id);
2186
*memslot = id_to_memslot(slots, id);
2187
if (!(*memslot) || !(*memslot)->dirty_bitmap)
2188
return -ENOENT;
2189
2190
kvm_arch_sync_dirty_log(kvm, *memslot);
2191
2192
n = kvm_dirty_bitmap_bytes(*memslot);
2193
2194
for (i = 0; !any && i < n/sizeof(long); ++i)
2195
any = (*memslot)->dirty_bitmap[i];
2196
2197
if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2198
return -EFAULT;
2199
2200
if (any)
2201
*is_dirty = 1;
2202
return 0;
2203
}
2204
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dirty_log);
2205
2206
#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2207
/**
2208
* kvm_get_dirty_log_protect - get a snapshot of dirty pages
2209
* and reenable dirty page tracking for the corresponding pages.
2210
* @kvm: pointer to kvm instance
2211
* @log: slot id and address to which we copy the log
2212
*
2213
* We need to keep it in mind that VCPU threads can write to the bitmap
2214
* concurrently. So, to avoid losing track of dirty pages we keep the
2215
* following order:
2216
*
2217
* 1. Take a snapshot of the bit and clear it if needed.
2218
* 2. Write protect the corresponding page.
2219
* 3. Copy the snapshot to the userspace.
2220
* 4. Upon return caller flushes TLB's if needed.
2221
*
2222
* Between 2 and 4, the guest may write to the page using the remaining TLB
2223
* entry. This is not a problem because the page is reported dirty using
2224
* the snapshot taken before and step 4 ensures that writes done after
2225
* exiting to userspace will be logged for the next call.
2226
*
2227
*/
2228
static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2229
{
2230
struct kvm_memslots *slots;
2231
struct kvm_memory_slot *memslot;
2232
int i, as_id, id;
2233
unsigned long n;
2234
unsigned long *dirty_bitmap;
2235
unsigned long *dirty_bitmap_buffer;
2236
bool flush;
2237
2238
/* Dirty ring tracking may be exclusive to dirty log tracking */
2239
if (!kvm_use_dirty_bitmap(kvm))
2240
return -ENXIO;
2241
2242
as_id = log->slot >> 16;
2243
id = (u16)log->slot;
2244
if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2245
return -EINVAL;
2246
2247
slots = __kvm_memslots(kvm, as_id);
2248
memslot = id_to_memslot(slots, id);
2249
if (!memslot || !memslot->dirty_bitmap)
2250
return -ENOENT;
2251
2252
dirty_bitmap = memslot->dirty_bitmap;
2253
2254
kvm_arch_sync_dirty_log(kvm, memslot);
2255
2256
n = kvm_dirty_bitmap_bytes(memslot);
2257
flush = false;
2258
if (kvm->manual_dirty_log_protect) {
2259
/*
2260
* Unlike kvm_get_dirty_log, we always return false in *flush,
2261
* because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2262
* is some code duplication between this function and
2263
* kvm_get_dirty_log, but hopefully all architecture
2264
* transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2265
* can be eliminated.
2266
*/
2267
dirty_bitmap_buffer = dirty_bitmap;
2268
} else {
2269
dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2270
memset(dirty_bitmap_buffer, 0, n);
2271
2272
KVM_MMU_LOCK(kvm);
2273
for (i = 0; i < n / sizeof(long); i++) {
2274
unsigned long mask;
2275
gfn_t offset;
2276
2277
if (!dirty_bitmap[i])
2278
continue;
2279
2280
flush = true;
2281
mask = xchg(&dirty_bitmap[i], 0);
2282
dirty_bitmap_buffer[i] = mask;
2283
2284
offset = i * BITS_PER_LONG;
2285
kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2286
offset, mask);
2287
}
2288
KVM_MMU_UNLOCK(kvm);
2289
}
2290
2291
if (flush)
2292
kvm_flush_remote_tlbs_memslot(kvm, memslot);
2293
2294
if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2295
return -EFAULT;
2296
return 0;
2297
}
2298
2299
2300
/**
2301
* kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2302
* @kvm: kvm instance
2303
* @log: slot id and address to which we copy the log
2304
*
2305
* Steps 1-4 below provide general overview of dirty page logging. See
2306
* kvm_get_dirty_log_protect() function description for additional details.
2307
*
2308
* We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2309
* always flush the TLB (step 4) even if previous step failed and the dirty
2310
* bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2311
* does not preclude user space subsequent dirty log read. Flushing TLB ensures
2312
* writes will be marked dirty for next log read.
2313
*
2314
* 1. Take a snapshot of the bit and clear it if needed.
2315
* 2. Write protect the corresponding page.
2316
* 3. Copy the snapshot to the userspace.
2317
* 4. Flush TLB's if needed.
2318
*/
2319
static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2320
struct kvm_dirty_log *log)
2321
{
2322
int r;
2323
2324
mutex_lock(&kvm->slots_lock);
2325
2326
r = kvm_get_dirty_log_protect(kvm, log);
2327
2328
mutex_unlock(&kvm->slots_lock);
2329
return r;
2330
}
2331
2332
/**
2333
* kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2334
* and reenable dirty page tracking for the corresponding pages.
2335
* @kvm: pointer to kvm instance
2336
* @log: slot id and address from which to fetch the bitmap of dirty pages
2337
*/
2338
static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2339
struct kvm_clear_dirty_log *log)
2340
{
2341
struct kvm_memslots *slots;
2342
struct kvm_memory_slot *memslot;
2343
int as_id, id;
2344
gfn_t offset;
2345
unsigned long i, n;
2346
unsigned long *dirty_bitmap;
2347
unsigned long *dirty_bitmap_buffer;
2348
bool flush;
2349
2350
/* Dirty ring tracking may be exclusive to dirty log tracking */
2351
if (!kvm_use_dirty_bitmap(kvm))
2352
return -ENXIO;
2353
2354
as_id = log->slot >> 16;
2355
id = (u16)log->slot;
2356
if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2357
return -EINVAL;
2358
2359
if (log->first_page & 63)
2360
return -EINVAL;
2361
2362
slots = __kvm_memslots(kvm, as_id);
2363
memslot = id_to_memslot(slots, id);
2364
if (!memslot || !memslot->dirty_bitmap)
2365
return -ENOENT;
2366
2367
dirty_bitmap = memslot->dirty_bitmap;
2368
2369
n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2370
2371
if (log->first_page > memslot->npages ||
2372
log->num_pages > memslot->npages - log->first_page ||
2373
(log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2374
return -EINVAL;
2375
2376
kvm_arch_sync_dirty_log(kvm, memslot);
2377
2378
flush = false;
2379
dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2380
if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2381
return -EFAULT;
2382
2383
KVM_MMU_LOCK(kvm);
2384
for (offset = log->first_page, i = offset / BITS_PER_LONG,
2385
n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2386
i++, offset += BITS_PER_LONG) {
2387
unsigned long mask = *dirty_bitmap_buffer++;
2388
atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2389
if (!mask)
2390
continue;
2391
2392
mask &= atomic_long_fetch_andnot(mask, p);
2393
2394
/*
2395
* mask contains the bits that really have been cleared. This
2396
* never includes any bits beyond the length of the memslot (if
2397
* the length is not aligned to 64 pages), therefore it is not
2398
* a problem if userspace sets them in log->dirty_bitmap.
2399
*/
2400
if (mask) {
2401
flush = true;
2402
kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2403
offset, mask);
2404
}
2405
}
2406
KVM_MMU_UNLOCK(kvm);
2407
2408
if (flush)
2409
kvm_flush_remote_tlbs_memslot(kvm, memslot);
2410
2411
return 0;
2412
}
2413
2414
static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2415
struct kvm_clear_dirty_log *log)
2416
{
2417
int r;
2418
2419
mutex_lock(&kvm->slots_lock);
2420
2421
r = kvm_clear_dirty_log_protect(kvm, log);
2422
2423
mutex_unlock(&kvm->slots_lock);
2424
return r;
2425
}
2426
#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2427
2428
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2429
static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2430
{
2431
if (!kvm || kvm_arch_has_private_mem(kvm))
2432
return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2433
2434
return 0;
2435
}
2436
2437
/*
2438
* Returns true if _all_ gfns in the range [@start, @end) have attributes
2439
* such that the bits in @mask match @attrs.
2440
*/
2441
bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2442
unsigned long mask, unsigned long attrs)
2443
{
2444
XA_STATE(xas, &kvm->mem_attr_array, start);
2445
unsigned long index;
2446
void *entry;
2447
2448
mask &= kvm_supported_mem_attributes(kvm);
2449
if (attrs & ~mask)
2450
return false;
2451
2452
if (end == start + 1)
2453
return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2454
2455
guard(rcu)();
2456
if (!attrs)
2457
return !xas_find(&xas, end - 1);
2458
2459
for (index = start; index < end; index++) {
2460
do {
2461
entry = xas_next(&xas);
2462
} while (xas_retry(&xas, entry));
2463
2464
if (xas.xa_index != index ||
2465
(xa_to_value(entry) & mask) != attrs)
2466
return false;
2467
}
2468
2469
return true;
2470
}
2471
2472
static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2473
struct kvm_mmu_notifier_range *range)
2474
{
2475
struct kvm_gfn_range gfn_range;
2476
struct kvm_memory_slot *slot;
2477
struct kvm_memslots *slots;
2478
struct kvm_memslot_iter iter;
2479
bool found_memslot = false;
2480
bool ret = false;
2481
int i;
2482
2483
gfn_range.arg = range->arg;
2484
gfn_range.may_block = range->may_block;
2485
2486
/*
2487
* If/when KVM supports more attributes beyond private .vs shared, this
2488
* _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target
2489
* range already has the desired private vs. shared state (it's unclear
2490
* if that is a net win). For now, KVM reaches this point if and only
2491
* if the private flag is being toggled, i.e. all mappings are in play.
2492
*/
2493
2494
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2495
slots = __kvm_memslots(kvm, i);
2496
2497
kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2498
slot = iter.slot;
2499
gfn_range.slot = slot;
2500
2501
gfn_range.start = max(range->start, slot->base_gfn);
2502
gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2503
if (gfn_range.start >= gfn_range.end)
2504
continue;
2505
2506
if (!found_memslot) {
2507
found_memslot = true;
2508
KVM_MMU_LOCK(kvm);
2509
if (!IS_KVM_NULL_FN(range->on_lock))
2510
range->on_lock(kvm);
2511
}
2512
2513
ret |= range->handler(kvm, &gfn_range);
2514
}
2515
}
2516
2517
if (range->flush_on_ret && ret)
2518
kvm_flush_remote_tlbs(kvm);
2519
2520
if (found_memslot)
2521
KVM_MMU_UNLOCK(kvm);
2522
}
2523
2524
static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2525
struct kvm_gfn_range *range)
2526
{
2527
/*
2528
* Unconditionally add the range to the invalidation set, regardless of
2529
* whether or not the arch callback actually needs to zap SPTEs. E.g.
2530
* if KVM supports RWX attributes in the future and the attributes are
2531
* going from R=>RW, zapping isn't strictly necessary. Unconditionally
2532
* adding the range allows KVM to require that MMU invalidations add at
2533
* least one range between begin() and end(), e.g. allows KVM to detect
2534
* bugs where the add() is missed. Relaxing the rule *might* be safe,
2535
* but it's not obvious that allowing new mappings while the attributes
2536
* are in flux is desirable or worth the complexity.
2537
*/
2538
kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2539
2540
return kvm_arch_pre_set_memory_attributes(kvm, range);
2541
}
2542
2543
/* Set @attributes for the gfn range [@start, @end). */
2544
static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2545
unsigned long attributes)
2546
{
2547
struct kvm_mmu_notifier_range pre_set_range = {
2548
.start = start,
2549
.end = end,
2550
.arg.attributes = attributes,
2551
.handler = kvm_pre_set_memory_attributes,
2552
.on_lock = kvm_mmu_invalidate_begin,
2553
.flush_on_ret = true,
2554
.may_block = true,
2555
};
2556
struct kvm_mmu_notifier_range post_set_range = {
2557
.start = start,
2558
.end = end,
2559
.arg.attributes = attributes,
2560
.handler = kvm_arch_post_set_memory_attributes,
2561
.on_lock = kvm_mmu_invalidate_end,
2562
.may_block = true,
2563
};
2564
unsigned long i;
2565
void *entry;
2566
int r = 0;
2567
2568
entry = attributes ? xa_mk_value(attributes) : NULL;
2569
2570
trace_kvm_vm_set_mem_attributes(start, end, attributes);
2571
2572
mutex_lock(&kvm->slots_lock);
2573
2574
/* Nothing to do if the entire range has the desired attributes. */
2575
if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2576
goto out_unlock;
2577
2578
/*
2579
* Reserve memory ahead of time to avoid having to deal with failures
2580
* partway through setting the new attributes.
2581
*/
2582
for (i = start; i < end; i++) {
2583
r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2584
if (r)
2585
goto out_unlock;
2586
2587
cond_resched();
2588
}
2589
2590
kvm_handle_gfn_range(kvm, &pre_set_range);
2591
2592
for (i = start; i < end; i++) {
2593
r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2594
GFP_KERNEL_ACCOUNT));
2595
KVM_BUG_ON(r, kvm);
2596
cond_resched();
2597
}
2598
2599
kvm_handle_gfn_range(kvm, &post_set_range);
2600
2601
out_unlock:
2602
mutex_unlock(&kvm->slots_lock);
2603
2604
return r;
2605
}
2606
static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2607
struct kvm_memory_attributes *attrs)
2608
{
2609
gfn_t start, end;
2610
2611
/* flags is currently not used. */
2612
if (attrs->flags)
2613
return -EINVAL;
2614
if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2615
return -EINVAL;
2616
if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2617
return -EINVAL;
2618
if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2619
return -EINVAL;
2620
2621
start = attrs->address >> PAGE_SHIFT;
2622
end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2623
2624
/*
2625
* xarray tracks data using "unsigned long", and as a result so does
2626
* KVM. For simplicity, supports generic attributes only on 64-bit
2627
* architectures.
2628
*/
2629
BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2630
2631
return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2632
}
2633
#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2634
2635
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2636
{
2637
return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2638
}
2639
EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_memslot);
2640
2641
struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2642
{
2643
struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2644
u64 gen = slots->generation;
2645
struct kvm_memory_slot *slot;
2646
2647
/*
2648
* This also protects against using a memslot from a different address space,
2649
* since different address spaces have different generation numbers.
2650
*/
2651
if (unlikely(gen != vcpu->last_used_slot_gen)) {
2652
vcpu->last_used_slot = NULL;
2653
vcpu->last_used_slot_gen = gen;
2654
}
2655
2656
slot = try_get_memslot(vcpu->last_used_slot, gfn);
2657
if (slot)
2658
return slot;
2659
2660
/*
2661
* Fall back to searching all memslots. We purposely use
2662
* search_memslots() instead of __gfn_to_memslot() to avoid
2663
* thrashing the VM-wide last_used_slot in kvm_memslots.
2664
*/
2665
slot = search_memslots(slots, gfn, false);
2666
if (slot) {
2667
vcpu->last_used_slot = slot;
2668
return slot;
2669
}
2670
2671
return NULL;
2672
}
2673
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_memslot);
2674
2675
bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2676
{
2677
struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2678
2679
return kvm_is_visible_memslot(memslot);
2680
}
2681
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_visible_gfn);
2682
2683
bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2684
{
2685
struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2686
2687
return kvm_is_visible_memslot(memslot);
2688
}
2689
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_visible_gfn);
2690
2691
unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2692
{
2693
struct vm_area_struct *vma;
2694
unsigned long addr, size;
2695
2696
size = PAGE_SIZE;
2697
2698
addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2699
if (kvm_is_error_hva(addr))
2700
return PAGE_SIZE;
2701
2702
mmap_read_lock(current->mm);
2703
vma = find_vma(current->mm, addr);
2704
if (!vma)
2705
goto out;
2706
2707
size = vma_kernel_pagesize(vma);
2708
2709
out:
2710
mmap_read_unlock(current->mm);
2711
2712
return size;
2713
}
2714
2715
static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2716
{
2717
return slot->flags & KVM_MEM_READONLY;
2718
}
2719
2720
static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2721
gfn_t *nr_pages, bool write)
2722
{
2723
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2724
return KVM_HVA_ERR_BAD;
2725
2726
if (memslot_is_readonly(slot) && write)
2727
return KVM_HVA_ERR_RO_BAD;
2728
2729
if (nr_pages)
2730
*nr_pages = slot->npages - (gfn - slot->base_gfn);
2731
2732
return __gfn_to_hva_memslot(slot, gfn);
2733
}
2734
2735
static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2736
gfn_t *nr_pages)
2737
{
2738
return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2739
}
2740
2741
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2742
gfn_t gfn)
2743
{
2744
return gfn_to_hva_many(slot, gfn, NULL);
2745
}
2746
EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva_memslot);
2747
2748
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2749
{
2750
return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2751
}
2752
EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva);
2753
2754
unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2755
{
2756
return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2757
}
2758
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_hva);
2759
2760
/*
2761
* Return the hva of a @gfn and the R/W attribute if possible.
2762
*
2763
* @slot: the kvm_memory_slot which contains @gfn
2764
* @gfn: the gfn to be translated
2765
* @writable: used to return the read/write attribute of the @slot if the hva
2766
* is valid and @writable is not NULL
2767
*/
2768
unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2769
gfn_t gfn, bool *writable)
2770
{
2771
unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2772
2773
if (!kvm_is_error_hva(hva) && writable)
2774
*writable = !memslot_is_readonly(slot);
2775
2776
return hva;
2777
}
2778
2779
unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2780
{
2781
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2782
2783
return gfn_to_hva_memslot_prot(slot, gfn, writable);
2784
}
2785
2786
unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2787
{
2788
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2789
2790
return gfn_to_hva_memslot_prot(slot, gfn, writable);
2791
}
2792
2793
static bool kvm_is_ad_tracked_page(struct page *page)
2794
{
2795
/*
2796
* Per page-flags.h, pages tagged PG_reserved "should in general not be
2797
* touched (e.g. set dirty) except by its owner".
2798
*/
2799
return !PageReserved(page);
2800
}
2801
2802
static void kvm_set_page_dirty(struct page *page)
2803
{
2804
if (kvm_is_ad_tracked_page(page))
2805
SetPageDirty(page);
2806
}
2807
2808
static void kvm_set_page_accessed(struct page *page)
2809
{
2810
if (kvm_is_ad_tracked_page(page))
2811
mark_page_accessed(page);
2812
}
2813
2814
void kvm_release_page_clean(struct page *page)
2815
{
2816
if (!page)
2817
return;
2818
2819
kvm_set_page_accessed(page);
2820
put_page(page);
2821
}
2822
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_clean);
2823
2824
void kvm_release_page_dirty(struct page *page)
2825
{
2826
if (!page)
2827
return;
2828
2829
kvm_set_page_dirty(page);
2830
kvm_release_page_clean(page);
2831
}
2832
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_dirty);
2833
2834
static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2835
struct follow_pfnmap_args *map, bool writable)
2836
{
2837
kvm_pfn_t pfn;
2838
2839
WARN_ON_ONCE(!!page == !!map);
2840
2841
if (kfp->map_writable)
2842
*kfp->map_writable = writable;
2843
2844
if (map)
2845
pfn = map->pfn;
2846
else
2847
pfn = page_to_pfn(page);
2848
2849
*kfp->refcounted_page = page;
2850
2851
return pfn;
2852
}
2853
2854
/*
2855
* The fast path to get the writable pfn which will be stored in @pfn,
2856
* true indicates success, otherwise false is returned.
2857
*/
2858
static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2859
{
2860
struct page *page;
2861
bool r;
2862
2863
/*
2864
* Try the fast-only path when the caller wants to pin/get the page for
2865
* writing. If the caller only wants to read the page, KVM must go
2866
* down the full, slow path in order to avoid racing an operation that
2867
* breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2868
* at the old, read-only page while mm/ points at a new, writable page.
2869
*/
2870
if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2871
return false;
2872
2873
if (kfp->pin)
2874
r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2875
else
2876
r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2877
2878
if (r) {
2879
*pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2880
return true;
2881
}
2882
2883
return false;
2884
}
2885
2886
/*
2887
* The slow path to get the pfn of the specified host virtual address,
2888
* 1 indicates success, -errno is returned if error is detected.
2889
*/
2890
static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2891
{
2892
/*
2893
* When a VCPU accesses a page that is not mapped into the secondary
2894
* MMU, we lookup the page using GUP to map it, so the guest VCPU can
2895
* make progress. We always want to honor NUMA hinting faults in that
2896
* case, because GUP usage corresponds to memory accesses from the VCPU.
2897
* Otherwise, we'd not trigger NUMA hinting faults once a page is
2898
* mapped into the secondary MMU and gets accessed by a VCPU.
2899
*
2900
* Note that get_user_page_fast_only() and FOLL_WRITE for now
2901
* implicitly honor NUMA hinting faults and don't need this flag.
2902
*/
2903
unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2904
struct page *page, *wpage;
2905
int npages;
2906
2907
if (kfp->pin)
2908
npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2909
else
2910
npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
2911
if (npages != 1)
2912
return npages;
2913
2914
/*
2915
* Pinning is mutually exclusive with opportunistically mapping a read
2916
* fault as writable, as KVM should never pin pages when mapping memory
2917
* into the guest (pinning is only for direct accesses from KVM).
2918
*/
2919
if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2920
goto out;
2921
2922
/* map read fault as writable if possible */
2923
if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2924
get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2925
put_page(page);
2926
page = wpage;
2927
flags |= FOLL_WRITE;
2928
}
2929
2930
out:
2931
*pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
2932
return npages;
2933
}
2934
2935
static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2936
{
2937
if (unlikely(!(vma->vm_flags & VM_READ)))
2938
return false;
2939
2940
if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2941
return false;
2942
2943
return true;
2944
}
2945
2946
static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2947
struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
2948
{
2949
struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2950
bool write_fault = kfp->flags & FOLL_WRITE;
2951
int r;
2952
2953
/*
2954
* Remapped memory cannot be pinned in any meaningful sense. Bail if
2955
* the caller wants to pin the page, i.e. access the page outside of
2956
* MMU notifier protection, and unsafe umappings are disallowed.
2957
*/
2958
if (kfp->pin && !allow_unsafe_mappings)
2959
return -EINVAL;
2960
2961
r = follow_pfnmap_start(&args);
2962
if (r) {
2963
/*
2964
* get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2965
* not call the fault handler, so do it here.
2966
*/
2967
bool unlocked = false;
2968
r = fixup_user_fault(current->mm, kfp->hva,
2969
(write_fault ? FAULT_FLAG_WRITE : 0),
2970
&unlocked);
2971
if (unlocked)
2972
return -EAGAIN;
2973
if (r)
2974
return r;
2975
2976
r = follow_pfnmap_start(&args);
2977
if (r)
2978
return r;
2979
}
2980
2981
if (write_fault && !args.writable) {
2982
*p_pfn = KVM_PFN_ERR_RO_FAULT;
2983
goto out;
2984
}
2985
2986
*p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
2987
out:
2988
follow_pfnmap_end(&args);
2989
return r;
2990
}
2991
2992
kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
2993
{
2994
struct vm_area_struct *vma;
2995
kvm_pfn_t pfn;
2996
int npages, r;
2997
2998
might_sleep();
2999
3000
if (WARN_ON_ONCE(!kfp->refcounted_page))
3001
return KVM_PFN_ERR_FAULT;
3002
3003
if (hva_to_pfn_fast(kfp, &pfn))
3004
return pfn;
3005
3006
npages = hva_to_pfn_slow(kfp, &pfn);
3007
if (npages == 1)
3008
return pfn;
3009
if (npages == -EINTR || npages == -EAGAIN)
3010
return KVM_PFN_ERR_SIGPENDING;
3011
if (npages == -EHWPOISON)
3012
return KVM_PFN_ERR_HWPOISON;
3013
3014
mmap_read_lock(current->mm);
3015
retry:
3016
vma = vma_lookup(current->mm, kfp->hva);
3017
3018
if (vma == NULL)
3019
pfn = KVM_PFN_ERR_FAULT;
3020
else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3021
r = hva_to_pfn_remapped(vma, kfp, &pfn);
3022
if (r == -EAGAIN)
3023
goto retry;
3024
if (r < 0)
3025
pfn = KVM_PFN_ERR_FAULT;
3026
} else {
3027
if ((kfp->flags & FOLL_NOWAIT) &&
3028
vma_is_valid(vma, kfp->flags & FOLL_WRITE))
3029
pfn = KVM_PFN_ERR_NEEDS_IO;
3030
else
3031
pfn = KVM_PFN_ERR_FAULT;
3032
}
3033
mmap_read_unlock(current->mm);
3034
return pfn;
3035
}
3036
3037
static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
3038
{
3039
kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
3040
kfp->flags & FOLL_WRITE);
3041
3042
if (kfp->hva == KVM_HVA_ERR_RO_BAD)
3043
return KVM_PFN_ERR_RO_FAULT;
3044
3045
if (kvm_is_error_hva(kfp->hva))
3046
return KVM_PFN_NOSLOT;
3047
3048
if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
3049
*kfp->map_writable = false;
3050
kfp->map_writable = NULL;
3051
}
3052
3053
return hva_to_pfn(kfp);
3054
}
3055
3056
kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
3057
unsigned int foll, bool *writable,
3058
struct page **refcounted_page)
3059
{
3060
struct kvm_follow_pfn kfp = {
3061
.slot = slot,
3062
.gfn = gfn,
3063
.flags = foll,
3064
.map_writable = writable,
3065
.refcounted_page = refcounted_page,
3066
};
3067
3068
if (WARN_ON_ONCE(!writable || !refcounted_page))
3069
return KVM_PFN_ERR_FAULT;
3070
3071
*writable = false;
3072
*refcounted_page = NULL;
3073
3074
return kvm_follow_pfn(&kfp);
3075
}
3076
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_faultin_pfn);
3077
3078
int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
3079
struct page **pages, int nr_pages)
3080
{
3081
unsigned long addr;
3082
gfn_t entry = 0;
3083
3084
addr = gfn_to_hva_many(slot, gfn, &entry);
3085
if (kvm_is_error_hva(addr))
3086
return -1;
3087
3088
if (entry < nr_pages)
3089
return 0;
3090
3091
return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3092
}
3093
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prefetch_pages);
3094
3095
/*
3096
* Don't use this API unless you are absolutely, positively certain that KVM
3097
* needs to get a struct page, e.g. to pin the page for firmware DMA.
3098
*
3099
* FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3100
* its refcount.
3101
*/
3102
struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3103
{
3104
struct page *refcounted_page = NULL;
3105
struct kvm_follow_pfn kfp = {
3106
.slot = gfn_to_memslot(kvm, gfn),
3107
.gfn = gfn,
3108
.flags = write ? FOLL_WRITE : 0,
3109
.refcounted_page = &refcounted_page,
3110
};
3111
3112
(void)kvm_follow_pfn(&kfp);
3113
return refcounted_page;
3114
}
3115
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__gfn_to_page);
3116
3117
int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3118
bool writable)
3119
{
3120
struct kvm_follow_pfn kfp = {
3121
.slot = gfn_to_memslot(vcpu->kvm, gfn),
3122
.gfn = gfn,
3123
.flags = writable ? FOLL_WRITE : 0,
3124
.refcounted_page = &map->pinned_page,
3125
.pin = true,
3126
};
3127
3128
map->pinned_page = NULL;
3129
map->page = NULL;
3130
map->hva = NULL;
3131
map->gfn = gfn;
3132
map->writable = writable;
3133
3134
map->pfn = kvm_follow_pfn(&kfp);
3135
if (is_error_noslot_pfn(map->pfn))
3136
return -EINVAL;
3137
3138
if (pfn_valid(map->pfn)) {
3139
map->page = pfn_to_page(map->pfn);
3140
map->hva = kmap(map->page);
3141
#ifdef CONFIG_HAS_IOMEM
3142
} else {
3143
map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3144
#endif
3145
}
3146
3147
return map->hva ? 0 : -EFAULT;
3148
}
3149
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_map);
3150
3151
void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
3152
{
3153
if (!map->hva)
3154
return;
3155
3156
if (map->page)
3157
kunmap(map->page);
3158
#ifdef CONFIG_HAS_IOMEM
3159
else
3160
memunmap(map->hva);
3161
#endif
3162
3163
if (map->writable)
3164
kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3165
3166
if (map->pinned_page) {
3167
if (map->writable)
3168
kvm_set_page_dirty(map->pinned_page);
3169
kvm_set_page_accessed(map->pinned_page);
3170
unpin_user_page(map->pinned_page);
3171
}
3172
3173
map->hva = NULL;
3174
map->page = NULL;
3175
map->pinned_page = NULL;
3176
}
3177
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_unmap);
3178
3179
static int next_segment(unsigned long len, int offset)
3180
{
3181
if (len > PAGE_SIZE - offset)
3182
return PAGE_SIZE - offset;
3183
else
3184
return len;
3185
}
3186
3187
/* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3188
static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3189
void *data, int offset, int len)
3190
{
3191
int r;
3192
unsigned long addr;
3193
3194
if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3195
return -EFAULT;
3196
3197
addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3198
if (kvm_is_error_hva(addr))
3199
return -EFAULT;
3200
r = __copy_from_user(data, (void __user *)addr + offset, len);
3201
if (r)
3202
return -EFAULT;
3203
return 0;
3204
}
3205
3206
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3207
int len)
3208
{
3209
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3210
3211
return __kvm_read_guest_page(slot, gfn, data, offset, len);
3212
}
3213
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_page);
3214
3215
int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3216
int offset, int len)
3217
{
3218
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3219
3220
return __kvm_read_guest_page(slot, gfn, data, offset, len);
3221
}
3222
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_page);
3223
3224
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3225
{
3226
gfn_t gfn = gpa >> PAGE_SHIFT;
3227
int seg;
3228
int offset = offset_in_page(gpa);
3229
int ret;
3230
3231
while ((seg = next_segment(len, offset)) != 0) {
3232
ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3233
if (ret < 0)
3234
return ret;
3235
offset = 0;
3236
len -= seg;
3237
data += seg;
3238
++gfn;
3239
}
3240
return 0;
3241
}
3242
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest);
3243
3244
int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3245
{
3246
gfn_t gfn = gpa >> PAGE_SHIFT;
3247
int seg;
3248
int offset = offset_in_page(gpa);
3249
int ret;
3250
3251
while ((seg = next_segment(len, offset)) != 0) {
3252
ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3253
if (ret < 0)
3254
return ret;
3255
offset = 0;
3256
len -= seg;
3257
data += seg;
3258
++gfn;
3259
}
3260
return 0;
3261
}
3262
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest);
3263
3264
static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3265
void *data, int offset, unsigned long len)
3266
{
3267
int r;
3268
unsigned long addr;
3269
3270
if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3271
return -EFAULT;
3272
3273
addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3274
if (kvm_is_error_hva(addr))
3275
return -EFAULT;
3276
pagefault_disable();
3277
r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3278
pagefault_enable();
3279
if (r)
3280
return -EFAULT;
3281
return 0;
3282
}
3283
3284
int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3285
void *data, unsigned long len)
3286
{
3287
gfn_t gfn = gpa >> PAGE_SHIFT;
3288
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3289
int offset = offset_in_page(gpa);
3290
3291
return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3292
}
3293
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_atomic);
3294
3295
/* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3296
static int __kvm_write_guest_page(struct kvm *kvm,
3297
struct kvm_memory_slot *memslot, gfn_t gfn,
3298
const void *data, int offset, int len)
3299
{
3300
int r;
3301
unsigned long addr;
3302
3303
if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3304
return -EFAULT;
3305
3306
addr = gfn_to_hva_memslot(memslot, gfn);
3307
if (kvm_is_error_hva(addr))
3308
return -EFAULT;
3309
r = __copy_to_user((void __user *)addr + offset, data, len);
3310
if (r)
3311
return -EFAULT;
3312
mark_page_dirty_in_slot(kvm, memslot, gfn);
3313
return 0;
3314
}
3315
3316
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3317
const void *data, int offset, int len)
3318
{
3319
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3320
3321
return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3322
}
3323
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_page);
3324
3325
int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3326
const void *data, int offset, int len)
3327
{
3328
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3329
3330
return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3331
}
3332
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest_page);
3333
3334
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3335
unsigned long len)
3336
{
3337
gfn_t gfn = gpa >> PAGE_SHIFT;
3338
int seg;
3339
int offset = offset_in_page(gpa);
3340
int ret;
3341
3342
while ((seg = next_segment(len, offset)) != 0) {
3343
ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3344
if (ret < 0)
3345
return ret;
3346
offset = 0;
3347
len -= seg;
3348
data += seg;
3349
++gfn;
3350
}
3351
return 0;
3352
}
3353
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest);
3354
3355
int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3356
unsigned long len)
3357
{
3358
gfn_t gfn = gpa >> PAGE_SHIFT;
3359
int seg;
3360
int offset = offset_in_page(gpa);
3361
int ret;
3362
3363
while ((seg = next_segment(len, offset)) != 0) {
3364
ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3365
if (ret < 0)
3366
return ret;
3367
offset = 0;
3368
len -= seg;
3369
data += seg;
3370
++gfn;
3371
}
3372
return 0;
3373
}
3374
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest);
3375
3376
static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3377
struct gfn_to_hva_cache *ghc,
3378
gpa_t gpa, unsigned long len)
3379
{
3380
int offset = offset_in_page(gpa);
3381
gfn_t start_gfn = gpa >> PAGE_SHIFT;
3382
gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3383
gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3384
gfn_t nr_pages_avail;
3385
3386
/* Update ghc->generation before performing any error checks. */
3387
ghc->generation = slots->generation;
3388
3389
if (start_gfn > end_gfn) {
3390
ghc->hva = KVM_HVA_ERR_BAD;
3391
return -EINVAL;
3392
}
3393
3394
/*
3395
* If the requested region crosses two memslots, we still
3396
* verify that the entire region is valid here.
3397
*/
3398
for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3399
ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3400
ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3401
&nr_pages_avail);
3402
if (kvm_is_error_hva(ghc->hva))
3403
return -EFAULT;
3404
}
3405
3406
/* Use the slow path for cross page reads and writes. */
3407
if (nr_pages_needed == 1)
3408
ghc->hva += offset;
3409
else
3410
ghc->memslot = NULL;
3411
3412
ghc->gpa = gpa;
3413
ghc->len = len;
3414
return 0;
3415
}
3416
3417
int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3418
gpa_t gpa, unsigned long len)
3419
{
3420
struct kvm_memslots *slots = kvm_memslots(kvm);
3421
return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3422
}
3423
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_gfn_to_hva_cache_init);
3424
3425
int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3426
void *data, unsigned int offset,
3427
unsigned long len)
3428
{
3429
struct kvm_memslots *slots = kvm_memslots(kvm);
3430
int r;
3431
gpa_t gpa = ghc->gpa + offset;
3432
3433
if (WARN_ON_ONCE(len + offset > ghc->len))
3434
return -EINVAL;
3435
3436
if (slots->generation != ghc->generation) {
3437
if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3438
return -EFAULT;
3439
}
3440
3441
if (kvm_is_error_hva(ghc->hva))
3442
return -EFAULT;
3443
3444
if (unlikely(!ghc->memslot))
3445
return kvm_write_guest(kvm, gpa, data, len);
3446
3447
r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3448
if (r)
3449
return -EFAULT;
3450
mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3451
3452
return 0;
3453
}
3454
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_offset_cached);
3455
3456
int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3457
void *data, unsigned long len)
3458
{
3459
return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3460
}
3461
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_cached);
3462
3463
int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3464
void *data, unsigned int offset,
3465
unsigned long len)
3466
{
3467
struct kvm_memslots *slots = kvm_memslots(kvm);
3468
int r;
3469
gpa_t gpa = ghc->gpa + offset;
3470
3471
if (WARN_ON_ONCE(len + offset > ghc->len))
3472
return -EINVAL;
3473
3474
if (slots->generation != ghc->generation) {
3475
if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3476
return -EFAULT;
3477
}
3478
3479
if (kvm_is_error_hva(ghc->hva))
3480
return -EFAULT;
3481
3482
if (unlikely(!ghc->memslot))
3483
return kvm_read_guest(kvm, gpa, data, len);
3484
3485
r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3486
if (r)
3487
return -EFAULT;
3488
3489
return 0;
3490
}
3491
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_offset_cached);
3492
3493
int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3494
void *data, unsigned long len)
3495
{
3496
return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3497
}
3498
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_cached);
3499
3500
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3501
{
3502
const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3503
gfn_t gfn = gpa >> PAGE_SHIFT;
3504
int seg;
3505
int offset = offset_in_page(gpa);
3506
int ret;
3507
3508
while ((seg = next_segment(len, offset)) != 0) {
3509
ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3510
if (ret < 0)
3511
return ret;
3512
offset = 0;
3513
len -= seg;
3514
++gfn;
3515
}
3516
return 0;
3517
}
3518
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_clear_guest);
3519
3520
void mark_page_dirty_in_slot(struct kvm *kvm,
3521
const struct kvm_memory_slot *memslot,
3522
gfn_t gfn)
3523
{
3524
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3525
3526
#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3527
if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3528
return;
3529
3530
WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3531
#endif
3532
3533
if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3534
unsigned long rel_gfn = gfn - memslot->base_gfn;
3535
u32 slot = (memslot->as_id << 16) | memslot->id;
3536
3537
if (kvm->dirty_ring_size && vcpu)
3538
kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3539
else if (memslot->dirty_bitmap)
3540
set_bit_le(rel_gfn, memslot->dirty_bitmap);
3541
}
3542
}
3543
EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty_in_slot);
3544
3545
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3546
{
3547
struct kvm_memory_slot *memslot;
3548
3549
memslot = gfn_to_memslot(kvm, gfn);
3550
mark_page_dirty_in_slot(kvm, memslot, gfn);
3551
}
3552
EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty);
3553
3554
void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3555
{
3556
struct kvm_memory_slot *memslot;
3557
3558
memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3559
mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3560
}
3561
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_mark_page_dirty);
3562
3563
void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3564
{
3565
if (!vcpu->sigset_active)
3566
return;
3567
3568
/*
3569
* This does a lockless modification of ->real_blocked, which is fine
3570
* because, only current can change ->real_blocked and all readers of
3571
* ->real_blocked don't care as long ->real_blocked is always a subset
3572
* of ->blocked.
3573
*/
3574
sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3575
}
3576
3577
void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3578
{
3579
if (!vcpu->sigset_active)
3580
return;
3581
3582
sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3583
sigemptyset(&current->real_blocked);
3584
}
3585
3586
static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3587
{
3588
unsigned int old, val, grow, grow_start;
3589
3590
old = val = vcpu->halt_poll_ns;
3591
grow_start = READ_ONCE(halt_poll_ns_grow_start);
3592
grow = READ_ONCE(halt_poll_ns_grow);
3593
if (!grow)
3594
goto out;
3595
3596
val *= grow;
3597
if (val < grow_start)
3598
val = grow_start;
3599
3600
vcpu->halt_poll_ns = val;
3601
out:
3602
trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3603
}
3604
3605
static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3606
{
3607
unsigned int old, val, shrink, grow_start;
3608
3609
old = val = vcpu->halt_poll_ns;
3610
shrink = READ_ONCE(halt_poll_ns_shrink);
3611
grow_start = READ_ONCE(halt_poll_ns_grow_start);
3612
if (shrink == 0)
3613
val = 0;
3614
else
3615
val /= shrink;
3616
3617
if (val < grow_start)
3618
val = 0;
3619
3620
vcpu->halt_poll_ns = val;
3621
trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3622
}
3623
3624
static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3625
{
3626
int ret = -EINTR;
3627
int idx = srcu_read_lock(&vcpu->kvm->srcu);
3628
3629
if (kvm_arch_vcpu_runnable(vcpu))
3630
goto out;
3631
if (kvm_cpu_has_pending_timer(vcpu))
3632
goto out;
3633
if (signal_pending(current))
3634
goto out;
3635
if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3636
goto out;
3637
3638
ret = 0;
3639
out:
3640
srcu_read_unlock(&vcpu->kvm->srcu, idx);
3641
return ret;
3642
}
3643
3644
/*
3645
* Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3646
* pending. This is mostly used when halting a vCPU, but may also be used
3647
* directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3648
*/
3649
bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3650
{
3651
struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3652
bool waited = false;
3653
3654
vcpu->stat.generic.blocking = 1;
3655
3656
preempt_disable();
3657
kvm_arch_vcpu_blocking(vcpu);
3658
prepare_to_rcuwait(wait);
3659
preempt_enable();
3660
3661
for (;;) {
3662
set_current_state(TASK_INTERRUPTIBLE);
3663
3664
if (kvm_vcpu_check_block(vcpu) < 0)
3665
break;
3666
3667
waited = true;
3668
schedule();
3669
}
3670
3671
preempt_disable();
3672
finish_rcuwait(wait);
3673
kvm_arch_vcpu_unblocking(vcpu);
3674
preempt_enable();
3675
3676
vcpu->stat.generic.blocking = 0;
3677
3678
return waited;
3679
}
3680
3681
static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3682
ktime_t end, bool success)
3683
{
3684
struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3685
u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3686
3687
++vcpu->stat.generic.halt_attempted_poll;
3688
3689
if (success) {
3690
++vcpu->stat.generic.halt_successful_poll;
3691
3692
if (!vcpu_valid_wakeup(vcpu))
3693
++vcpu->stat.generic.halt_poll_invalid;
3694
3695
stats->halt_poll_success_ns += poll_ns;
3696
KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3697
} else {
3698
stats->halt_poll_fail_ns += poll_ns;
3699
KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3700
}
3701
}
3702
3703
static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3704
{
3705
struct kvm *kvm = vcpu->kvm;
3706
3707
if (kvm->override_halt_poll_ns) {
3708
/*
3709
* Ensure kvm->max_halt_poll_ns is not read before
3710
* kvm->override_halt_poll_ns.
3711
*
3712
* Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3713
*/
3714
smp_rmb();
3715
return READ_ONCE(kvm->max_halt_poll_ns);
3716
}
3717
3718
return READ_ONCE(halt_poll_ns);
3719
}
3720
3721
/*
3722
* Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3723
* polling is enabled, busy wait for a short time before blocking to avoid the
3724
* expensive block+unblock sequence if a wake event arrives soon after the vCPU
3725
* is halted.
3726
*/
3727
void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3728
{
3729
unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3730
bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3731
ktime_t start, cur, poll_end;
3732
bool waited = false;
3733
bool do_halt_poll;
3734
u64 halt_ns;
3735
3736
if (vcpu->halt_poll_ns > max_halt_poll_ns)
3737
vcpu->halt_poll_ns = max_halt_poll_ns;
3738
3739
do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3740
3741
start = cur = poll_end = ktime_get();
3742
if (do_halt_poll) {
3743
ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3744
3745
do {
3746
if (kvm_vcpu_check_block(vcpu) < 0)
3747
goto out;
3748
cpu_relax();
3749
poll_end = cur = ktime_get();
3750
} while (kvm_vcpu_can_poll(cur, stop));
3751
}
3752
3753
waited = kvm_vcpu_block(vcpu);
3754
3755
cur = ktime_get();
3756
if (waited) {
3757
vcpu->stat.generic.halt_wait_ns +=
3758
ktime_to_ns(cur) - ktime_to_ns(poll_end);
3759
KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3760
ktime_to_ns(cur) - ktime_to_ns(poll_end));
3761
}
3762
out:
3763
/* The total time the vCPU was "halted", including polling time. */
3764
halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3765
3766
/*
3767
* Note, halt-polling is considered successful so long as the vCPU was
3768
* never actually scheduled out, i.e. even if the wake event arrived
3769
* after of the halt-polling loop itself, but before the full wait.
3770
*/
3771
if (do_halt_poll)
3772
update_halt_poll_stats(vcpu, start, poll_end, !waited);
3773
3774
if (halt_poll_allowed) {
3775
/* Recompute the max halt poll time in case it changed. */
3776
max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3777
3778
if (!vcpu_valid_wakeup(vcpu)) {
3779
shrink_halt_poll_ns(vcpu);
3780
} else if (max_halt_poll_ns) {
3781
if (halt_ns <= vcpu->halt_poll_ns)
3782
;
3783
/* we had a long block, shrink polling */
3784
else if (vcpu->halt_poll_ns &&
3785
halt_ns > max_halt_poll_ns)
3786
shrink_halt_poll_ns(vcpu);
3787
/* we had a short halt and our poll time is too small */
3788
else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3789
halt_ns < max_halt_poll_ns)
3790
grow_halt_poll_ns(vcpu);
3791
} else {
3792
vcpu->halt_poll_ns = 0;
3793
}
3794
}
3795
3796
trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3797
}
3798
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_halt);
3799
3800
bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3801
{
3802
if (__kvm_vcpu_wake_up(vcpu)) {
3803
WRITE_ONCE(vcpu->ready, true);
3804
++vcpu->stat.generic.halt_wakeup;
3805
return true;
3806
}
3807
3808
return false;
3809
}
3810
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_wake_up);
3811
3812
#ifndef CONFIG_S390
3813
/*
3814
* Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3815
*/
3816
void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait)
3817
{
3818
int me, cpu;
3819
3820
if (kvm_vcpu_wake_up(vcpu))
3821
return;
3822
3823
me = get_cpu();
3824
/*
3825
* The only state change done outside the vcpu mutex is IN_GUEST_MODE
3826
* to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3827
* kick" check does not need atomic operations if kvm_vcpu_kick is used
3828
* within the vCPU thread itself.
3829
*/
3830
if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3831
if (vcpu->mode == IN_GUEST_MODE)
3832
WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3833
goto out;
3834
}
3835
3836
/*
3837
* Note, the vCPU could get migrated to a different pCPU at any point
3838
* after kvm_arch_vcpu_should_kick(), which could result in sending an
3839
* IPI to the previous pCPU. But, that's ok because the purpose of the
3840
* IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3841
* vCPU also requires it to leave IN_GUEST_MODE.
3842
*/
3843
if (kvm_arch_vcpu_should_kick(vcpu)) {
3844
cpu = READ_ONCE(vcpu->cpu);
3845
if (cpu != me && (unsigned int)cpu < nr_cpu_ids && cpu_online(cpu)) {
3846
/*
3847
* Use a reschedule IPI to kick the vCPU if the caller
3848
* doesn't need to wait for a response, as KVM allows
3849
* kicking vCPUs while IRQs are disabled, but using the
3850
* SMP function call framework with IRQs disabled can
3851
* deadlock due to taking cross-CPU locks.
3852
*/
3853
if (wait)
3854
smp_call_function_single(cpu, ack_kick, NULL, wait);
3855
else
3856
smp_send_reschedule(cpu);
3857
}
3858
}
3859
out:
3860
put_cpu();
3861
}
3862
EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_kick);
3863
#endif /* !CONFIG_S390 */
3864
3865
int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3866
{
3867
struct task_struct *task = NULL;
3868
int ret;
3869
3870
if (!read_trylock(&target->pid_lock))
3871
return 0;
3872
3873
if (target->pid)
3874
task = get_pid_task(target->pid, PIDTYPE_PID);
3875
3876
read_unlock(&target->pid_lock);
3877
3878
if (!task)
3879
return 0;
3880
ret = yield_to(task, 1);
3881
put_task_struct(task);
3882
3883
return ret;
3884
}
3885
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_yield_to);
3886
3887
/*
3888
* Helper that checks whether a VCPU is eligible for directed yield.
3889
* Most eligible candidate to yield is decided by following heuristics:
3890
*
3891
* (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3892
* (preempted lock holder), indicated by @in_spin_loop.
3893
* Set at the beginning and cleared at the end of interception/PLE handler.
3894
*
3895
* (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3896
* chance last time (mostly it has become eligible now since we have probably
3897
* yielded to lockholder in last iteration. This is done by toggling
3898
* @dy_eligible each time a VCPU checked for eligibility.)
3899
*
3900
* Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3901
* to preempted lock-holder could result in wrong VCPU selection and CPU
3902
* burning. Giving priority for a potential lock-holder increases lock
3903
* progress.
3904
*
3905
* Since algorithm is based on heuristics, accessing another VCPU data without
3906
* locking does not harm. It may result in trying to yield to same VCPU, fail
3907
* and continue with next VCPU and so on.
3908
*/
3909
static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3910
{
3911
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3912
bool eligible;
3913
3914
eligible = !vcpu->spin_loop.in_spin_loop ||
3915
vcpu->spin_loop.dy_eligible;
3916
3917
if (vcpu->spin_loop.in_spin_loop)
3918
kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3919
3920
return eligible;
3921
#else
3922
return true;
3923
#endif
3924
}
3925
3926
/*
3927
* Unlike kvm_arch_vcpu_runnable, this function is called outside
3928
* a vcpu_load/vcpu_put pair. However, for most architectures
3929
* kvm_arch_vcpu_runnable does not require vcpu_load.
3930
*/
3931
bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3932
{
3933
return kvm_arch_vcpu_runnable(vcpu);
3934
}
3935
3936
static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3937
{
3938
if (kvm_arch_dy_runnable(vcpu))
3939
return true;
3940
3941
#ifdef CONFIG_KVM_ASYNC_PF
3942
if (!list_empty_careful(&vcpu->async_pf.done))
3943
return true;
3944
#endif
3945
3946
return false;
3947
}
3948
3949
/*
3950
* By default, simply query the target vCPU's current mode when checking if a
3951
* vCPU was preempted in kernel mode. All architectures except x86 (or more
3952
* specifical, except VMX) allow querying whether or not a vCPU is in kernel
3953
* mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3954
* directly for cross-vCPU checks is functionally correct and accurate.
3955
*/
3956
bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3957
{
3958
return kvm_arch_vcpu_in_kernel(vcpu);
3959
}
3960
3961
bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3962
{
3963
return false;
3964
}
3965
3966
void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3967
{
3968
int nr_vcpus, start, i, idx, yielded;
3969
struct kvm *kvm = me->kvm;
3970
struct kvm_vcpu *vcpu;
3971
int try = 3;
3972
3973
nr_vcpus = atomic_read(&kvm->online_vcpus);
3974
if (nr_vcpus < 2)
3975
return;
3976
3977
/* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3978
smp_rmb();
3979
3980
kvm_vcpu_set_in_spin_loop(me, true);
3981
3982
/*
3983
* The current vCPU ("me") is spinning in kernel mode, i.e. is likely
3984
* waiting for a resource to become available. Attempt to yield to a
3985
* vCPU that is runnable, but not currently running, e.g. because the
3986
* vCPU was preempted by a higher priority task. With luck, the vCPU
3987
* that was preempted is holding a lock or some other resource that the
3988
* current vCPU is waiting to acquire, and yielding to the other vCPU
3989
* will allow it to make forward progress and release the lock (or kick
3990
* the spinning vCPU, etc).
3991
*
3992
* Since KVM has no insight into what exactly the guest is doing,
3993
* approximate a round-robin selection by iterating over all vCPUs,
3994
* starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu,
3995
* iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
3996
*
3997
* Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
3998
* they may all try to yield to the same vCPU(s). But as above, this
3999
* is all best effort due to KVM's lack of visibility into the guest.
4000
*/
4001
start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
4002
for (i = 0; i < nr_vcpus; i++) {
4003
idx = (start + i) % nr_vcpus;
4004
if (idx == me->vcpu_idx)
4005
continue;
4006
4007
vcpu = xa_load(&kvm->vcpu_array, idx);
4008
if (!READ_ONCE(vcpu->ready))
4009
continue;
4010
if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4011
continue;
4012
4013
/*
4014
* Treat the target vCPU as being in-kernel if it has a pending
4015
* interrupt, as the vCPU trying to yield may be spinning
4016
* waiting on IPI delivery, i.e. the target vCPU is in-kernel
4017
* for the purposes of directed yield.
4018
*/
4019
if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4020
!kvm_arch_dy_has_pending_interrupt(vcpu) &&
4021
!kvm_arch_vcpu_preempted_in_kernel(vcpu))
4022
continue;
4023
4024
if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4025
continue;
4026
4027
yielded = kvm_vcpu_yield_to(vcpu);
4028
if (yielded > 0) {
4029
WRITE_ONCE(kvm->last_boosted_vcpu, i);
4030
break;
4031
} else if (yielded < 0 && !--try) {
4032
break;
4033
}
4034
}
4035
kvm_vcpu_set_in_spin_loop(me, false);
4036
4037
/* Ensure vcpu is not eligible during next spinloop */
4038
kvm_vcpu_set_dy_eligible(me, false);
4039
}
4040
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_on_spin);
4041
4042
static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4043
{
4044
#ifdef CONFIG_HAVE_KVM_DIRTY_RING
4045
return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4046
(pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4047
kvm->dirty_ring_size / PAGE_SIZE);
4048
#else
4049
return false;
4050
#endif
4051
}
4052
4053
static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4054
{
4055
struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4056
struct page *page;
4057
4058
if (vmf->pgoff == 0)
4059
page = virt_to_page(vcpu->run);
4060
#ifdef CONFIG_X86
4061
else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4062
page = virt_to_page(vcpu->arch.pio_data);
4063
#endif
4064
#ifdef CONFIG_KVM_MMIO
4065
else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4066
page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4067
#endif
4068
else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4069
page = kvm_dirty_ring_get_page(
4070
&vcpu->dirty_ring,
4071
vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4072
else
4073
return kvm_arch_vcpu_fault(vcpu, vmf);
4074
get_page(page);
4075
vmf->page = page;
4076
return 0;
4077
}
4078
4079
static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4080
.fault = kvm_vcpu_fault,
4081
};
4082
4083
static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4084
{
4085
struct kvm_vcpu *vcpu = file->private_data;
4086
unsigned long pages = vma_pages(vma);
4087
4088
if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4089
kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4090
((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4091
return -EINVAL;
4092
4093
vma->vm_ops = &kvm_vcpu_vm_ops;
4094
return 0;
4095
}
4096
4097
static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4098
{
4099
struct kvm_vcpu *vcpu = filp->private_data;
4100
4101
kvm_put_kvm(vcpu->kvm);
4102
return 0;
4103
}
4104
4105
static struct file_operations kvm_vcpu_fops = {
4106
.release = kvm_vcpu_release,
4107
.unlocked_ioctl = kvm_vcpu_ioctl,
4108
.mmap = kvm_vcpu_mmap,
4109
.llseek = noop_llseek,
4110
KVM_COMPAT(kvm_vcpu_compat_ioctl),
4111
};
4112
4113
/*
4114
* Allocates an inode for the vcpu.
4115
*/
4116
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4117
{
4118
char name[8 + 1 + ITOA_MAX_LEN + 1];
4119
4120
snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4121
return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4122
}
4123
4124
#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4125
static int vcpu_get_pid(void *data, u64 *val)
4126
{
4127
struct kvm_vcpu *vcpu = data;
4128
4129
read_lock(&vcpu->pid_lock);
4130
*val = pid_nr(vcpu->pid);
4131
read_unlock(&vcpu->pid_lock);
4132
return 0;
4133
}
4134
4135
DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4136
4137
static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4138
{
4139
struct dentry *debugfs_dentry;
4140
char dir_name[ITOA_MAX_LEN * 2];
4141
4142
if (!debugfs_initialized())
4143
return;
4144
4145
snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4146
debugfs_dentry = debugfs_create_dir(dir_name,
4147
vcpu->kvm->debugfs_dentry);
4148
debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4149
&vcpu_get_pid_fops);
4150
4151
kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4152
}
4153
#endif
4154
4155
/*
4156
* Creates some virtual cpus. Good luck creating more than one.
4157
*/
4158
static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4159
{
4160
int r;
4161
struct kvm_vcpu *vcpu;
4162
struct page *page;
4163
4164
/*
4165
* KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4166
* too-large values instead of silently truncating.
4167
*
4168
* Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4169
* changing the storage type (at the very least, IDs should be tracked
4170
* as unsigned ints).
4171
*/
4172
BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4173
if (id >= KVM_MAX_VCPU_IDS)
4174
return -EINVAL;
4175
4176
mutex_lock(&kvm->lock);
4177
if (kvm->created_vcpus >= kvm->max_vcpus) {
4178
mutex_unlock(&kvm->lock);
4179
return -EINVAL;
4180
}
4181
4182
r = kvm_arch_vcpu_precreate(kvm, id);
4183
if (r) {
4184
mutex_unlock(&kvm->lock);
4185
return r;
4186
}
4187
4188
kvm->created_vcpus++;
4189
mutex_unlock(&kvm->lock);
4190
4191
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4192
if (!vcpu) {
4193
r = -ENOMEM;
4194
goto vcpu_decrement;
4195
}
4196
4197
BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4198
page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4199
if (!page) {
4200
r = -ENOMEM;
4201
goto vcpu_free;
4202
}
4203
vcpu->run = page_address(page);
4204
4205
kvm_vcpu_init(vcpu, kvm, id);
4206
4207
r = kvm_arch_vcpu_create(vcpu);
4208
if (r)
4209
goto vcpu_free_run_page;
4210
4211
if (kvm->dirty_ring_size) {
4212
r = kvm_dirty_ring_alloc(kvm, &vcpu->dirty_ring,
4213
id, kvm->dirty_ring_size);
4214
if (r)
4215
goto arch_vcpu_destroy;
4216
}
4217
4218
mutex_lock(&kvm->lock);
4219
4220
if (kvm_get_vcpu_by_id(kvm, id)) {
4221
r = -EEXIST;
4222
goto unlock_vcpu_destroy;
4223
}
4224
4225
vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4226
r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
4227
WARN_ON_ONCE(r == -EBUSY);
4228
if (r)
4229
goto unlock_vcpu_destroy;
4230
4231
/*
4232
* Now it's all set up, let userspace reach it. Grab the vCPU's mutex
4233
* so that userspace can't invoke vCPU ioctl()s until the vCPU is fully
4234
* visible (per online_vcpus), e.g. so that KVM doesn't get tricked
4235
* into a NULL-pointer dereference because KVM thinks the _current_
4236
* vCPU doesn't exist. As a bonus, taking vcpu->mutex ensures lockdep
4237
* knows it's taken *inside* kvm->lock.
4238
*/
4239
mutex_lock(&vcpu->mutex);
4240
kvm_get_kvm(kvm);
4241
r = create_vcpu_fd(vcpu);
4242
if (r < 0)
4243
goto kvm_put_xa_erase;
4244
4245
/*
4246
* Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4247
* pointer before kvm->online_vcpu's incremented value.
4248
*/
4249
smp_wmb();
4250
atomic_inc(&kvm->online_vcpus);
4251
mutex_unlock(&vcpu->mutex);
4252
4253
mutex_unlock(&kvm->lock);
4254
kvm_arch_vcpu_postcreate(vcpu);
4255
kvm_create_vcpu_debugfs(vcpu);
4256
return r;
4257
4258
kvm_put_xa_erase:
4259
mutex_unlock(&vcpu->mutex);
4260
kvm_put_kvm_no_destroy(kvm);
4261
xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
4262
unlock_vcpu_destroy:
4263
mutex_unlock(&kvm->lock);
4264
kvm_dirty_ring_free(&vcpu->dirty_ring);
4265
arch_vcpu_destroy:
4266
kvm_arch_vcpu_destroy(vcpu);
4267
vcpu_free_run_page:
4268
free_page((unsigned long)vcpu->run);
4269
vcpu_free:
4270
kmem_cache_free(kvm_vcpu_cache, vcpu);
4271
vcpu_decrement:
4272
mutex_lock(&kvm->lock);
4273
kvm->created_vcpus--;
4274
mutex_unlock(&kvm->lock);
4275
return r;
4276
}
4277
4278
static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4279
{
4280
if (sigset) {
4281
sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4282
vcpu->sigset_active = 1;
4283
vcpu->sigset = *sigset;
4284
} else
4285
vcpu->sigset_active = 0;
4286
return 0;
4287
}
4288
4289
static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4290
size_t size, loff_t *offset)
4291
{
4292
struct kvm_vcpu *vcpu = file->private_data;
4293
4294
return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4295
&kvm_vcpu_stats_desc[0], &vcpu->stat,
4296
sizeof(vcpu->stat), user_buffer, size, offset);
4297
}
4298
4299
static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4300
{
4301
struct kvm_vcpu *vcpu = file->private_data;
4302
4303
kvm_put_kvm(vcpu->kvm);
4304
return 0;
4305
}
4306
4307
static const struct file_operations kvm_vcpu_stats_fops = {
4308
.owner = THIS_MODULE,
4309
.read = kvm_vcpu_stats_read,
4310
.release = kvm_vcpu_stats_release,
4311
.llseek = noop_llseek,
4312
};
4313
4314
static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4315
{
4316
int fd;
4317
struct file *file;
4318
char name[15 + ITOA_MAX_LEN + 1];
4319
4320
snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4321
4322
fd = get_unused_fd_flags(O_CLOEXEC);
4323
if (fd < 0)
4324
return fd;
4325
4326
file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu,
4327
O_RDONLY, FMODE_PREAD);
4328
if (IS_ERR(file)) {
4329
put_unused_fd(fd);
4330
return PTR_ERR(file);
4331
}
4332
4333
kvm_get_kvm(vcpu->kvm);
4334
fd_install(fd, file);
4335
4336
return fd;
4337
}
4338
4339
#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4340
static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4341
struct kvm_pre_fault_memory *range)
4342
{
4343
int idx;
4344
long r;
4345
u64 full_size;
4346
4347
if (range->flags)
4348
return -EINVAL;
4349
4350
if (!PAGE_ALIGNED(range->gpa) ||
4351
!PAGE_ALIGNED(range->size) ||
4352
range->gpa + range->size <= range->gpa)
4353
return -EINVAL;
4354
4355
vcpu_load(vcpu);
4356
idx = srcu_read_lock(&vcpu->kvm->srcu);
4357
4358
full_size = range->size;
4359
do {
4360
if (signal_pending(current)) {
4361
r = -EINTR;
4362
break;
4363
}
4364
4365
r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4366
if (WARN_ON_ONCE(r == 0 || r == -EIO))
4367
break;
4368
4369
if (r < 0)
4370
break;
4371
4372
range->size -= r;
4373
range->gpa += r;
4374
cond_resched();
4375
} while (range->size);
4376
4377
srcu_read_unlock(&vcpu->kvm->srcu, idx);
4378
vcpu_put(vcpu);
4379
4380
/* Return success if at least one page was mapped successfully. */
4381
return full_size == range->size ? r : 0;
4382
}
4383
#endif
4384
4385
static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu)
4386
{
4387
struct kvm *kvm = vcpu->kvm;
4388
4389
/*
4390
* In practice, this happy path will always be taken, as a well-behaved
4391
* VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns.
4392
*/
4393
if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus)))
4394
return 0;
4395
4396
/*
4397
* Acquire and release the vCPU's mutex to wait for vCPU creation to
4398
* complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU
4399
* is fully online).
4400
*/
4401
if (mutex_lock_killable(&vcpu->mutex))
4402
return -EINTR;
4403
4404
mutex_unlock(&vcpu->mutex);
4405
4406
if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx)))
4407
return -EIO;
4408
4409
return 0;
4410
}
4411
4412
static long kvm_vcpu_ioctl(struct file *filp,
4413
unsigned int ioctl, unsigned long arg)
4414
{
4415
struct kvm_vcpu *vcpu = filp->private_data;
4416
void __user *argp = (void __user *)arg;
4417
int r;
4418
struct kvm_fpu *fpu = NULL;
4419
struct kvm_sregs *kvm_sregs = NULL;
4420
4421
if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4422
return -EIO;
4423
4424
if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4425
return -EINVAL;
4426
4427
/*
4428
* Wait for the vCPU to be online before handling the ioctl(), as KVM
4429
* assumes the vCPU is reachable via vcpu_array, i.e. may dereference
4430
* a NULL pointer if userspace invokes an ioctl() before KVM is ready.
4431
*/
4432
r = kvm_wait_for_vcpu_online(vcpu);
4433
if (r)
4434
return r;
4435
4436
/*
4437
* Some architectures have vcpu ioctls that are asynchronous to vcpu
4438
* execution; mutex_lock() would break them.
4439
*/
4440
r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4441
if (r != -ENOIOCTLCMD)
4442
return r;
4443
4444
if (mutex_lock_killable(&vcpu->mutex))
4445
return -EINTR;
4446
switch (ioctl) {
4447
case KVM_RUN: {
4448
struct pid *oldpid;
4449
r = -EINVAL;
4450
if (arg)
4451
goto out;
4452
4453
/*
4454
* Note, vcpu->pid is primarily protected by vcpu->mutex. The
4455
* dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4456
* read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4457
* directly to this vCPU
4458
*/
4459
oldpid = vcpu->pid;
4460
if (unlikely(oldpid != task_pid(current))) {
4461
/* The thread running this VCPU changed. */
4462
struct pid *newpid;
4463
4464
r = kvm_arch_vcpu_run_pid_change(vcpu);
4465
if (r)
4466
break;
4467
4468
newpid = get_task_pid(current, PIDTYPE_PID);
4469
write_lock(&vcpu->pid_lock);
4470
vcpu->pid = newpid;
4471
write_unlock(&vcpu->pid_lock);
4472
4473
put_pid(oldpid);
4474
}
4475
vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4476
r = kvm_arch_vcpu_ioctl_run(vcpu);
4477
vcpu->wants_to_run = false;
4478
4479
trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4480
break;
4481
}
4482
case KVM_GET_REGS: {
4483
struct kvm_regs *kvm_regs;
4484
4485
r = -ENOMEM;
4486
kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4487
if (!kvm_regs)
4488
goto out;
4489
r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4490
if (r)
4491
goto out_free1;
4492
r = -EFAULT;
4493
if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4494
goto out_free1;
4495
r = 0;
4496
out_free1:
4497
kfree(kvm_regs);
4498
break;
4499
}
4500
case KVM_SET_REGS: {
4501
struct kvm_regs *kvm_regs;
4502
4503
kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4504
if (IS_ERR(kvm_regs)) {
4505
r = PTR_ERR(kvm_regs);
4506
goto out;
4507
}
4508
r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4509
kfree(kvm_regs);
4510
break;
4511
}
4512
case KVM_GET_SREGS: {
4513
kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4514
r = -ENOMEM;
4515
if (!kvm_sregs)
4516
goto out;
4517
r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4518
if (r)
4519
goto out;
4520
r = -EFAULT;
4521
if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4522
goto out;
4523
r = 0;
4524
break;
4525
}
4526
case KVM_SET_SREGS: {
4527
kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4528
if (IS_ERR(kvm_sregs)) {
4529
r = PTR_ERR(kvm_sregs);
4530
kvm_sregs = NULL;
4531
goto out;
4532
}
4533
r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4534
break;
4535
}
4536
case KVM_GET_MP_STATE: {
4537
struct kvm_mp_state mp_state;
4538
4539
r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4540
if (r)
4541
goto out;
4542
r = -EFAULT;
4543
if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4544
goto out;
4545
r = 0;
4546
break;
4547
}
4548
case KVM_SET_MP_STATE: {
4549
struct kvm_mp_state mp_state;
4550
4551
r = -EFAULT;
4552
if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4553
goto out;
4554
r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4555
break;
4556
}
4557
case KVM_TRANSLATE: {
4558
struct kvm_translation tr;
4559
4560
r = -EFAULT;
4561
if (copy_from_user(&tr, argp, sizeof(tr)))
4562
goto out;
4563
r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4564
if (r)
4565
goto out;
4566
r = -EFAULT;
4567
if (copy_to_user(argp, &tr, sizeof(tr)))
4568
goto out;
4569
r = 0;
4570
break;
4571
}
4572
case KVM_SET_GUEST_DEBUG: {
4573
struct kvm_guest_debug dbg;
4574
4575
r = -EFAULT;
4576
if (copy_from_user(&dbg, argp, sizeof(dbg)))
4577
goto out;
4578
r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4579
break;
4580
}
4581
case KVM_SET_SIGNAL_MASK: {
4582
struct kvm_signal_mask __user *sigmask_arg = argp;
4583
struct kvm_signal_mask kvm_sigmask;
4584
sigset_t sigset, *p;
4585
4586
p = NULL;
4587
if (argp) {
4588
r = -EFAULT;
4589
if (copy_from_user(&kvm_sigmask, argp,
4590
sizeof(kvm_sigmask)))
4591
goto out;
4592
r = -EINVAL;
4593
if (kvm_sigmask.len != sizeof(sigset))
4594
goto out;
4595
r = -EFAULT;
4596
if (copy_from_user(&sigset, sigmask_arg->sigset,
4597
sizeof(sigset)))
4598
goto out;
4599
p = &sigset;
4600
}
4601
r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4602
break;
4603
}
4604
case KVM_GET_FPU: {
4605
fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4606
r = -ENOMEM;
4607
if (!fpu)
4608
goto out;
4609
r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4610
if (r)
4611
goto out;
4612
r = -EFAULT;
4613
if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4614
goto out;
4615
r = 0;
4616
break;
4617
}
4618
case KVM_SET_FPU: {
4619
fpu = memdup_user(argp, sizeof(*fpu));
4620
if (IS_ERR(fpu)) {
4621
r = PTR_ERR(fpu);
4622
fpu = NULL;
4623
goto out;
4624
}
4625
r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4626
break;
4627
}
4628
case KVM_GET_STATS_FD: {
4629
r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4630
break;
4631
}
4632
#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4633
case KVM_PRE_FAULT_MEMORY: {
4634
struct kvm_pre_fault_memory range;
4635
4636
r = -EFAULT;
4637
if (copy_from_user(&range, argp, sizeof(range)))
4638
break;
4639
r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4640
/* Pass back leftover range. */
4641
if (copy_to_user(argp, &range, sizeof(range)))
4642
r = -EFAULT;
4643
break;
4644
}
4645
#endif
4646
default:
4647
r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4648
}
4649
out:
4650
mutex_unlock(&vcpu->mutex);
4651
kfree(fpu);
4652
kfree(kvm_sregs);
4653
return r;
4654
}
4655
4656
#ifdef CONFIG_KVM_COMPAT
4657
static long kvm_vcpu_compat_ioctl(struct file *filp,
4658
unsigned int ioctl, unsigned long arg)
4659
{
4660
struct kvm_vcpu *vcpu = filp->private_data;
4661
void __user *argp = compat_ptr(arg);
4662
int r;
4663
4664
if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4665
return -EIO;
4666
4667
switch (ioctl) {
4668
case KVM_SET_SIGNAL_MASK: {
4669
struct kvm_signal_mask __user *sigmask_arg = argp;
4670
struct kvm_signal_mask kvm_sigmask;
4671
sigset_t sigset;
4672
4673
if (argp) {
4674
r = -EFAULT;
4675
if (copy_from_user(&kvm_sigmask, argp,
4676
sizeof(kvm_sigmask)))
4677
goto out;
4678
r = -EINVAL;
4679
if (kvm_sigmask.len != sizeof(compat_sigset_t))
4680
goto out;
4681
r = -EFAULT;
4682
if (get_compat_sigset(&sigset,
4683
(compat_sigset_t __user *)sigmask_arg->sigset))
4684
goto out;
4685
r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4686
} else
4687
r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4688
break;
4689
}
4690
default:
4691
r = kvm_vcpu_ioctl(filp, ioctl, arg);
4692
}
4693
4694
out:
4695
return r;
4696
}
4697
#endif
4698
4699
static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4700
{
4701
struct kvm_device *dev = filp->private_data;
4702
4703
if (dev->ops->mmap)
4704
return dev->ops->mmap(dev, vma);
4705
4706
return -ENODEV;
4707
}
4708
4709
static int kvm_device_ioctl_attr(struct kvm_device *dev,
4710
int (*accessor)(struct kvm_device *dev,
4711
struct kvm_device_attr *attr),
4712
unsigned long arg)
4713
{
4714
struct kvm_device_attr attr;
4715
4716
if (!accessor)
4717
return -EPERM;
4718
4719
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4720
return -EFAULT;
4721
4722
return accessor(dev, &attr);
4723
}
4724
4725
static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4726
unsigned long arg)
4727
{
4728
struct kvm_device *dev = filp->private_data;
4729
4730
if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4731
return -EIO;
4732
4733
switch (ioctl) {
4734
case KVM_SET_DEVICE_ATTR:
4735
return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4736
case KVM_GET_DEVICE_ATTR:
4737
return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4738
case KVM_HAS_DEVICE_ATTR:
4739
return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4740
default:
4741
if (dev->ops->ioctl)
4742
return dev->ops->ioctl(dev, ioctl, arg);
4743
4744
return -ENOTTY;
4745
}
4746
}
4747
4748
static int kvm_device_release(struct inode *inode, struct file *filp)
4749
{
4750
struct kvm_device *dev = filp->private_data;
4751
struct kvm *kvm = dev->kvm;
4752
4753
if (dev->ops->release) {
4754
mutex_lock(&kvm->lock);
4755
list_del_rcu(&dev->vm_node);
4756
synchronize_rcu();
4757
dev->ops->release(dev);
4758
mutex_unlock(&kvm->lock);
4759
}
4760
4761
kvm_put_kvm(kvm);
4762
return 0;
4763
}
4764
4765
static struct file_operations kvm_device_fops = {
4766
.unlocked_ioctl = kvm_device_ioctl,
4767
.release = kvm_device_release,
4768
KVM_COMPAT(kvm_device_ioctl),
4769
.mmap = kvm_device_mmap,
4770
};
4771
4772
struct kvm_device *kvm_device_from_filp(struct file *filp)
4773
{
4774
if (filp->f_op != &kvm_device_fops)
4775
return NULL;
4776
4777
return filp->private_data;
4778
}
4779
4780
static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4781
#ifdef CONFIG_KVM_MPIC
4782
[KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4783
[KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4784
#endif
4785
};
4786
4787
int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4788
{
4789
if (type >= ARRAY_SIZE(kvm_device_ops_table))
4790
return -ENOSPC;
4791
4792
if (kvm_device_ops_table[type] != NULL)
4793
return -EEXIST;
4794
4795
kvm_device_ops_table[type] = ops;
4796
return 0;
4797
}
4798
4799
void kvm_unregister_device_ops(u32 type)
4800
{
4801
if (kvm_device_ops_table[type] != NULL)
4802
kvm_device_ops_table[type] = NULL;
4803
}
4804
4805
static int kvm_ioctl_create_device(struct kvm *kvm,
4806
struct kvm_create_device *cd)
4807
{
4808
const struct kvm_device_ops *ops;
4809
struct kvm_device *dev;
4810
bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4811
int type;
4812
int ret;
4813
4814
if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4815
return -ENODEV;
4816
4817
type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4818
ops = kvm_device_ops_table[type];
4819
if (ops == NULL)
4820
return -ENODEV;
4821
4822
if (test)
4823
return 0;
4824
4825
dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4826
if (!dev)
4827
return -ENOMEM;
4828
4829
dev->ops = ops;
4830
dev->kvm = kvm;
4831
4832
mutex_lock(&kvm->lock);
4833
ret = ops->create(dev, type);
4834
if (ret < 0) {
4835
mutex_unlock(&kvm->lock);
4836
kfree(dev);
4837
return ret;
4838
}
4839
list_add_rcu(&dev->vm_node, &kvm->devices);
4840
mutex_unlock(&kvm->lock);
4841
4842
if (ops->init)
4843
ops->init(dev);
4844
4845
kvm_get_kvm(kvm);
4846
ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4847
if (ret < 0) {
4848
kvm_put_kvm_no_destroy(kvm);
4849
mutex_lock(&kvm->lock);
4850
list_del_rcu(&dev->vm_node);
4851
synchronize_rcu();
4852
if (ops->release)
4853
ops->release(dev);
4854
mutex_unlock(&kvm->lock);
4855
if (ops->destroy)
4856
ops->destroy(dev);
4857
return ret;
4858
}
4859
4860
cd->fd = ret;
4861
return 0;
4862
}
4863
4864
static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4865
{
4866
switch (arg) {
4867
case KVM_CAP_USER_MEMORY:
4868
case KVM_CAP_USER_MEMORY2:
4869
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4870
case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4871
case KVM_CAP_INTERNAL_ERROR_DATA:
4872
#ifdef CONFIG_HAVE_KVM_MSI
4873
case KVM_CAP_SIGNAL_MSI:
4874
#endif
4875
#ifdef CONFIG_HAVE_KVM_IRQCHIP
4876
case KVM_CAP_IRQFD:
4877
#endif
4878
case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4879
case KVM_CAP_CHECK_EXTENSION_VM:
4880
case KVM_CAP_ENABLE_CAP_VM:
4881
case KVM_CAP_HALT_POLL:
4882
return 1;
4883
#ifdef CONFIG_KVM_MMIO
4884
case KVM_CAP_COALESCED_MMIO:
4885
return KVM_COALESCED_MMIO_PAGE_OFFSET;
4886
case KVM_CAP_COALESCED_PIO:
4887
return 1;
4888
#endif
4889
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4890
case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4891
return KVM_DIRTY_LOG_MANUAL_CAPS;
4892
#endif
4893
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4894
case KVM_CAP_IRQ_ROUTING:
4895
return KVM_MAX_IRQ_ROUTES;
4896
#endif
4897
#if KVM_MAX_NR_ADDRESS_SPACES > 1
4898
case KVM_CAP_MULTI_ADDRESS_SPACE:
4899
if (kvm)
4900
return kvm_arch_nr_memslot_as_ids(kvm);
4901
return KVM_MAX_NR_ADDRESS_SPACES;
4902
#endif
4903
case KVM_CAP_NR_MEMSLOTS:
4904
return KVM_USER_MEM_SLOTS;
4905
case KVM_CAP_DIRTY_LOG_RING:
4906
#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4907
return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4908
#else
4909
return 0;
4910
#endif
4911
case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4912
#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4913
return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4914
#else
4915
return 0;
4916
#endif
4917
#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4918
case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4919
#endif
4920
case KVM_CAP_BINARY_STATS_FD:
4921
case KVM_CAP_SYSTEM_EVENT_DATA:
4922
case KVM_CAP_DEVICE_CTRL:
4923
return 1;
4924
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4925
case KVM_CAP_MEMORY_ATTRIBUTES:
4926
return kvm_supported_mem_attributes(kvm);
4927
#endif
4928
#ifdef CONFIG_KVM_GUEST_MEMFD
4929
case KVM_CAP_GUEST_MEMFD:
4930
return 1;
4931
case KVM_CAP_GUEST_MEMFD_MMAP:
4932
return !kvm || kvm_arch_supports_gmem_mmap(kvm);
4933
#endif
4934
default:
4935
break;
4936
}
4937
return kvm_vm_ioctl_check_extension(kvm, arg);
4938
}
4939
4940
static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4941
{
4942
int r;
4943
4944
if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4945
return -EINVAL;
4946
4947
/* the size should be power of 2 */
4948
if (!size || (size & (size - 1)))
4949
return -EINVAL;
4950
4951
/* Should be bigger to keep the reserved entries, or a page */
4952
if (size < kvm_dirty_ring_get_rsvd_entries(kvm) *
4953
sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4954
return -EINVAL;
4955
4956
if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4957
sizeof(struct kvm_dirty_gfn))
4958
return -E2BIG;
4959
4960
/* We only allow it to set once */
4961
if (kvm->dirty_ring_size)
4962
return -EINVAL;
4963
4964
mutex_lock(&kvm->lock);
4965
4966
if (kvm->created_vcpus) {
4967
/* We don't allow to change this value after vcpu created */
4968
r = -EINVAL;
4969
} else {
4970
kvm->dirty_ring_size = size;
4971
r = 0;
4972
}
4973
4974
mutex_unlock(&kvm->lock);
4975
return r;
4976
}
4977
4978
static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4979
{
4980
unsigned long i;
4981
struct kvm_vcpu *vcpu;
4982
int cleared = 0, r;
4983
4984
if (!kvm->dirty_ring_size)
4985
return -EINVAL;
4986
4987
mutex_lock(&kvm->slots_lock);
4988
4989
kvm_for_each_vcpu(i, vcpu, kvm) {
4990
r = kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring, &cleared);
4991
if (r)
4992
break;
4993
}
4994
4995
mutex_unlock(&kvm->slots_lock);
4996
4997
if (cleared)
4998
kvm_flush_remote_tlbs(kvm);
4999
5000
return cleared;
5001
}
5002
5003
int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5004
struct kvm_enable_cap *cap)
5005
{
5006
return -EINVAL;
5007
}
5008
5009
bool kvm_are_all_memslots_empty(struct kvm *kvm)
5010
{
5011
int i;
5012
5013
lockdep_assert_held(&kvm->slots_lock);
5014
5015
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
5016
if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
5017
return false;
5018
}
5019
5020
return true;
5021
}
5022
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_are_all_memslots_empty);
5023
5024
static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
5025
struct kvm_enable_cap *cap)
5026
{
5027
switch (cap->cap) {
5028
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5029
case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
5030
u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
5031
5032
if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
5033
allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5034
5035
if (cap->flags || (cap->args[0] & ~allowed_options))
5036
return -EINVAL;
5037
kvm->manual_dirty_log_protect = cap->args[0];
5038
return 0;
5039
}
5040
#endif
5041
case KVM_CAP_HALT_POLL: {
5042
if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5043
return -EINVAL;
5044
5045
kvm->max_halt_poll_ns = cap->args[0];
5046
5047
/*
5048
* Ensure kvm->override_halt_poll_ns does not become visible
5049
* before kvm->max_halt_poll_ns.
5050
*
5051
* Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5052
*/
5053
smp_wmb();
5054
kvm->override_halt_poll_ns = true;
5055
5056
return 0;
5057
}
5058
case KVM_CAP_DIRTY_LOG_RING:
5059
case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5060
if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5061
return -EINVAL;
5062
5063
return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5064
case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5065
int r = -EINVAL;
5066
5067
if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5068
!kvm->dirty_ring_size || cap->flags)
5069
return r;
5070
5071
mutex_lock(&kvm->slots_lock);
5072
5073
/*
5074
* For simplicity, allow enabling ring+bitmap if and only if
5075
* there are no memslots, e.g. to ensure all memslots allocate
5076
* a bitmap after the capability is enabled.
5077
*/
5078
if (kvm_are_all_memslots_empty(kvm)) {
5079
kvm->dirty_ring_with_bitmap = true;
5080
r = 0;
5081
}
5082
5083
mutex_unlock(&kvm->slots_lock);
5084
5085
return r;
5086
}
5087
default:
5088
return kvm_vm_ioctl_enable_cap(kvm, cap);
5089
}
5090
}
5091
5092
static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5093
size_t size, loff_t *offset)
5094
{
5095
struct kvm *kvm = file->private_data;
5096
5097
return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5098
&kvm_vm_stats_desc[0], &kvm->stat,
5099
sizeof(kvm->stat), user_buffer, size, offset);
5100
}
5101
5102
static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5103
{
5104
struct kvm *kvm = file->private_data;
5105
5106
kvm_put_kvm(kvm);
5107
return 0;
5108
}
5109
5110
static const struct file_operations kvm_vm_stats_fops = {
5111
.owner = THIS_MODULE,
5112
.read = kvm_vm_stats_read,
5113
.release = kvm_vm_stats_release,
5114
.llseek = noop_llseek,
5115
};
5116
5117
static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5118
{
5119
int fd;
5120
struct file *file;
5121
5122
fd = get_unused_fd_flags(O_CLOEXEC);
5123
if (fd < 0)
5124
return fd;
5125
5126
file = anon_inode_getfile_fmode("kvm-vm-stats",
5127
&kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD);
5128
if (IS_ERR(file)) {
5129
put_unused_fd(fd);
5130
return PTR_ERR(file);
5131
}
5132
5133
kvm_get_kvm(kvm);
5134
fd_install(fd, file);
5135
5136
return fd;
5137
}
5138
5139
#define SANITY_CHECK_MEM_REGION_FIELD(field) \
5140
do { \
5141
BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5142
offsetof(struct kvm_userspace_memory_region2, field)); \
5143
BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5144
sizeof_field(struct kvm_userspace_memory_region2, field)); \
5145
} while (0)
5146
5147
static long kvm_vm_ioctl(struct file *filp,
5148
unsigned int ioctl, unsigned long arg)
5149
{
5150
struct kvm *kvm = filp->private_data;
5151
void __user *argp = (void __user *)arg;
5152
int r;
5153
5154
if (kvm->mm != current->mm || kvm->vm_dead)
5155
return -EIO;
5156
switch (ioctl) {
5157
case KVM_CREATE_VCPU:
5158
r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5159
break;
5160
case KVM_ENABLE_CAP: {
5161
struct kvm_enable_cap cap;
5162
5163
r = -EFAULT;
5164
if (copy_from_user(&cap, argp, sizeof(cap)))
5165
goto out;
5166
r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5167
break;
5168
}
5169
case KVM_SET_USER_MEMORY_REGION2:
5170
case KVM_SET_USER_MEMORY_REGION: {
5171
struct kvm_userspace_memory_region2 mem;
5172
unsigned long size;
5173
5174
if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5175
/*
5176
* Fields beyond struct kvm_userspace_memory_region shouldn't be
5177
* accessed, but avoid leaking kernel memory in case of a bug.
5178
*/
5179
memset(&mem, 0, sizeof(mem));
5180
size = sizeof(struct kvm_userspace_memory_region);
5181
} else {
5182
size = sizeof(struct kvm_userspace_memory_region2);
5183
}
5184
5185
/* Ensure the common parts of the two structs are identical. */
5186
SANITY_CHECK_MEM_REGION_FIELD(slot);
5187
SANITY_CHECK_MEM_REGION_FIELD(flags);
5188
SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5189
SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5190
SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5191
5192
r = -EFAULT;
5193
if (copy_from_user(&mem, argp, size))
5194
goto out;
5195
5196
r = -EINVAL;
5197
if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5198
(mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5199
goto out;
5200
5201
r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5202
break;
5203
}
5204
case KVM_GET_DIRTY_LOG: {
5205
struct kvm_dirty_log log;
5206
5207
r = -EFAULT;
5208
if (copy_from_user(&log, argp, sizeof(log)))
5209
goto out;
5210
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5211
break;
5212
}
5213
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5214
case KVM_CLEAR_DIRTY_LOG: {
5215
struct kvm_clear_dirty_log log;
5216
5217
r = -EFAULT;
5218
if (copy_from_user(&log, argp, sizeof(log)))
5219
goto out;
5220
r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5221
break;
5222
}
5223
#endif
5224
#ifdef CONFIG_KVM_MMIO
5225
case KVM_REGISTER_COALESCED_MMIO: {
5226
struct kvm_coalesced_mmio_zone zone;
5227
5228
r = -EFAULT;
5229
if (copy_from_user(&zone, argp, sizeof(zone)))
5230
goto out;
5231
r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5232
break;
5233
}
5234
case KVM_UNREGISTER_COALESCED_MMIO: {
5235
struct kvm_coalesced_mmio_zone zone;
5236
5237
r = -EFAULT;
5238
if (copy_from_user(&zone, argp, sizeof(zone)))
5239
goto out;
5240
r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5241
break;
5242
}
5243
#endif
5244
case KVM_IRQFD: {
5245
struct kvm_irqfd data;
5246
5247
r = -EFAULT;
5248
if (copy_from_user(&data, argp, sizeof(data)))
5249
goto out;
5250
r = kvm_irqfd(kvm, &data);
5251
break;
5252
}
5253
case KVM_IOEVENTFD: {
5254
struct kvm_ioeventfd data;
5255
5256
r = -EFAULT;
5257
if (copy_from_user(&data, argp, sizeof(data)))
5258
goto out;
5259
r = kvm_ioeventfd(kvm, &data);
5260
break;
5261
}
5262
#ifdef CONFIG_HAVE_KVM_MSI
5263
case KVM_SIGNAL_MSI: {
5264
struct kvm_msi msi;
5265
5266
r = -EFAULT;
5267
if (copy_from_user(&msi, argp, sizeof(msi)))
5268
goto out;
5269
r = kvm_send_userspace_msi(kvm, &msi);
5270
break;
5271
}
5272
#endif
5273
#ifdef __KVM_HAVE_IRQ_LINE
5274
case KVM_IRQ_LINE_STATUS:
5275
case KVM_IRQ_LINE: {
5276
struct kvm_irq_level irq_event;
5277
5278
r = -EFAULT;
5279
if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5280
goto out;
5281
5282
r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5283
ioctl == KVM_IRQ_LINE_STATUS);
5284
if (r)
5285
goto out;
5286
5287
r = -EFAULT;
5288
if (ioctl == KVM_IRQ_LINE_STATUS) {
5289
if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5290
goto out;
5291
}
5292
5293
r = 0;
5294
break;
5295
}
5296
#endif
5297
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5298
case KVM_SET_GSI_ROUTING: {
5299
struct kvm_irq_routing routing;
5300
struct kvm_irq_routing __user *urouting;
5301
struct kvm_irq_routing_entry *entries = NULL;
5302
5303
r = -EFAULT;
5304
if (copy_from_user(&routing, argp, sizeof(routing)))
5305
goto out;
5306
r = -EINVAL;
5307
if (!kvm_arch_can_set_irq_routing(kvm))
5308
goto out;
5309
if (routing.nr > KVM_MAX_IRQ_ROUTES)
5310
goto out;
5311
if (routing.flags)
5312
goto out;
5313
if (routing.nr) {
5314
urouting = argp;
5315
entries = vmemdup_array_user(urouting->entries,
5316
routing.nr, sizeof(*entries));
5317
if (IS_ERR(entries)) {
5318
r = PTR_ERR(entries);
5319
goto out;
5320
}
5321
}
5322
r = kvm_set_irq_routing(kvm, entries, routing.nr,
5323
routing.flags);
5324
kvfree(entries);
5325
break;
5326
}
5327
#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5328
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5329
case KVM_SET_MEMORY_ATTRIBUTES: {
5330
struct kvm_memory_attributes attrs;
5331
5332
r = -EFAULT;
5333
if (copy_from_user(&attrs, argp, sizeof(attrs)))
5334
goto out;
5335
5336
r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5337
break;
5338
}
5339
#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5340
case KVM_CREATE_DEVICE: {
5341
struct kvm_create_device cd;
5342
5343
r = -EFAULT;
5344
if (copy_from_user(&cd, argp, sizeof(cd)))
5345
goto out;
5346
5347
r = kvm_ioctl_create_device(kvm, &cd);
5348
if (r)
5349
goto out;
5350
5351
r = -EFAULT;
5352
if (copy_to_user(argp, &cd, sizeof(cd)))
5353
goto out;
5354
5355
r = 0;
5356
break;
5357
}
5358
case KVM_CHECK_EXTENSION:
5359
r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5360
break;
5361
case KVM_RESET_DIRTY_RINGS:
5362
r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5363
break;
5364
case KVM_GET_STATS_FD:
5365
r = kvm_vm_ioctl_get_stats_fd(kvm);
5366
break;
5367
#ifdef CONFIG_KVM_GUEST_MEMFD
5368
case KVM_CREATE_GUEST_MEMFD: {
5369
struct kvm_create_guest_memfd guest_memfd;
5370
5371
r = -EFAULT;
5372
if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5373
goto out;
5374
5375
r = kvm_gmem_create(kvm, &guest_memfd);
5376
break;
5377
}
5378
#endif
5379
default:
5380
r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5381
}
5382
out:
5383
return r;
5384
}
5385
5386
#ifdef CONFIG_KVM_COMPAT
5387
struct compat_kvm_dirty_log {
5388
__u32 slot;
5389
__u32 padding1;
5390
union {
5391
compat_uptr_t dirty_bitmap; /* one bit per page */
5392
__u64 padding2;
5393
};
5394
};
5395
5396
struct compat_kvm_clear_dirty_log {
5397
__u32 slot;
5398
__u32 num_pages;
5399
__u64 first_page;
5400
union {
5401
compat_uptr_t dirty_bitmap; /* one bit per page */
5402
__u64 padding2;
5403
};
5404
};
5405
5406
long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5407
unsigned long arg)
5408
{
5409
return -ENOTTY;
5410
}
5411
5412
static long kvm_vm_compat_ioctl(struct file *filp,
5413
unsigned int ioctl, unsigned long arg)
5414
{
5415
struct kvm *kvm = filp->private_data;
5416
int r;
5417
5418
if (kvm->mm != current->mm || kvm->vm_dead)
5419
return -EIO;
5420
5421
r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5422
if (r != -ENOTTY)
5423
return r;
5424
5425
switch (ioctl) {
5426
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5427
case KVM_CLEAR_DIRTY_LOG: {
5428
struct compat_kvm_clear_dirty_log compat_log;
5429
struct kvm_clear_dirty_log log;
5430
5431
if (copy_from_user(&compat_log, (void __user *)arg,
5432
sizeof(compat_log)))
5433
return -EFAULT;
5434
log.slot = compat_log.slot;
5435
log.num_pages = compat_log.num_pages;
5436
log.first_page = compat_log.first_page;
5437
log.padding2 = compat_log.padding2;
5438
log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5439
5440
r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5441
break;
5442
}
5443
#endif
5444
case KVM_GET_DIRTY_LOG: {
5445
struct compat_kvm_dirty_log compat_log;
5446
struct kvm_dirty_log log;
5447
5448
if (copy_from_user(&compat_log, (void __user *)arg,
5449
sizeof(compat_log)))
5450
return -EFAULT;
5451
log.slot = compat_log.slot;
5452
log.padding1 = compat_log.padding1;
5453
log.padding2 = compat_log.padding2;
5454
log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5455
5456
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5457
break;
5458
}
5459
default:
5460
r = kvm_vm_ioctl(filp, ioctl, arg);
5461
}
5462
return r;
5463
}
5464
#endif
5465
5466
static struct file_operations kvm_vm_fops = {
5467
.release = kvm_vm_release,
5468
.unlocked_ioctl = kvm_vm_ioctl,
5469
.llseek = noop_llseek,
5470
KVM_COMPAT(kvm_vm_compat_ioctl),
5471
};
5472
5473
bool file_is_kvm(struct file *file)
5474
{
5475
return file && file->f_op == &kvm_vm_fops;
5476
}
5477
EXPORT_SYMBOL_FOR_KVM_INTERNAL(file_is_kvm);
5478
5479
static int kvm_dev_ioctl_create_vm(unsigned long type)
5480
{
5481
char fdname[ITOA_MAX_LEN + 1];
5482
int r, fd;
5483
struct kvm *kvm;
5484
struct file *file;
5485
5486
fd = get_unused_fd_flags(O_CLOEXEC);
5487
if (fd < 0)
5488
return fd;
5489
5490
snprintf(fdname, sizeof(fdname), "%d", fd);
5491
5492
kvm = kvm_create_vm(type, fdname);
5493
if (IS_ERR(kvm)) {
5494
r = PTR_ERR(kvm);
5495
goto put_fd;
5496
}
5497
5498
file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5499
if (IS_ERR(file)) {
5500
r = PTR_ERR(file);
5501
goto put_kvm;
5502
}
5503
5504
/*
5505
* Don't call kvm_put_kvm anymore at this point; file->f_op is
5506
* already set, with ->release() being kvm_vm_release(). In error
5507
* cases it will be called by the final fput(file) and will take
5508
* care of doing kvm_put_kvm(kvm).
5509
*/
5510
kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5511
5512
fd_install(fd, file);
5513
return fd;
5514
5515
put_kvm:
5516
kvm_put_kvm(kvm);
5517
put_fd:
5518
put_unused_fd(fd);
5519
return r;
5520
}
5521
5522
static long kvm_dev_ioctl(struct file *filp,
5523
unsigned int ioctl, unsigned long arg)
5524
{
5525
int r = -EINVAL;
5526
5527
switch (ioctl) {
5528
case KVM_GET_API_VERSION:
5529
if (arg)
5530
goto out;
5531
r = KVM_API_VERSION;
5532
break;
5533
case KVM_CREATE_VM:
5534
r = kvm_dev_ioctl_create_vm(arg);
5535
break;
5536
case KVM_CHECK_EXTENSION:
5537
r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5538
break;
5539
case KVM_GET_VCPU_MMAP_SIZE:
5540
if (arg)
5541
goto out;
5542
r = PAGE_SIZE; /* struct kvm_run */
5543
#ifdef CONFIG_X86
5544
r += PAGE_SIZE; /* pio data page */
5545
#endif
5546
#ifdef CONFIG_KVM_MMIO
5547
r += PAGE_SIZE; /* coalesced mmio ring page */
5548
#endif
5549
break;
5550
default:
5551
return kvm_arch_dev_ioctl(filp, ioctl, arg);
5552
}
5553
out:
5554
return r;
5555
}
5556
5557
static struct file_operations kvm_chardev_ops = {
5558
.unlocked_ioctl = kvm_dev_ioctl,
5559
.llseek = noop_llseek,
5560
KVM_COMPAT(kvm_dev_ioctl),
5561
};
5562
5563
static struct miscdevice kvm_dev = {
5564
KVM_MINOR,
5565
"kvm",
5566
&kvm_chardev_ops,
5567
};
5568
5569
#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5570
bool enable_virt_at_load = true;
5571
module_param(enable_virt_at_load, bool, 0444);
5572
EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_virt_at_load);
5573
5574
__visible bool kvm_rebooting;
5575
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_rebooting);
5576
5577
static DEFINE_PER_CPU(bool, virtualization_enabled);
5578
static DEFINE_MUTEX(kvm_usage_lock);
5579
static int kvm_usage_count;
5580
5581
__weak void kvm_arch_enable_virtualization(void)
5582
{
5583
5584
}
5585
5586
__weak void kvm_arch_disable_virtualization(void)
5587
{
5588
5589
}
5590
5591
static int kvm_enable_virtualization_cpu(void)
5592
{
5593
if (__this_cpu_read(virtualization_enabled))
5594
return 0;
5595
5596
if (kvm_arch_enable_virtualization_cpu()) {
5597
pr_info("kvm: enabling virtualization on CPU%d failed\n",
5598
raw_smp_processor_id());
5599
return -EIO;
5600
}
5601
5602
__this_cpu_write(virtualization_enabled, true);
5603
return 0;
5604
}
5605
5606
static int kvm_online_cpu(unsigned int cpu)
5607
{
5608
/*
5609
* Abort the CPU online process if hardware virtualization cannot
5610
* be enabled. Otherwise running VMs would encounter unrecoverable
5611
* errors when scheduled to this CPU.
5612
*/
5613
return kvm_enable_virtualization_cpu();
5614
}
5615
5616
static void kvm_disable_virtualization_cpu(void *ign)
5617
{
5618
if (!__this_cpu_read(virtualization_enabled))
5619
return;
5620
5621
kvm_arch_disable_virtualization_cpu();
5622
5623
__this_cpu_write(virtualization_enabled, false);
5624
}
5625
5626
static int kvm_offline_cpu(unsigned int cpu)
5627
{
5628
kvm_disable_virtualization_cpu(NULL);
5629
return 0;
5630
}
5631
5632
static void kvm_shutdown(void)
5633
{
5634
/*
5635
* Disable hardware virtualization and set kvm_rebooting to indicate
5636
* that KVM has asynchronously disabled hardware virtualization, i.e.
5637
* that relevant errors and exceptions aren't entirely unexpected.
5638
* Some flavors of hardware virtualization need to be disabled before
5639
* transferring control to firmware (to perform shutdown/reboot), e.g.
5640
* on x86, virtualization can block INIT interrupts, which are used by
5641
* firmware to pull APs back under firmware control. Note, this path
5642
* is used for both shutdown and reboot scenarios, i.e. neither name is
5643
* 100% comprehensive.
5644
*/
5645
pr_info("kvm: exiting hardware virtualization\n");
5646
kvm_rebooting = true;
5647
on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5648
}
5649
5650
static int kvm_suspend(void)
5651
{
5652
/*
5653
* Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5654
* callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5655
* count is stable. Assert that kvm_usage_lock is not held to ensure
5656
* the system isn't suspended while KVM is enabling hardware. Hardware
5657
* enabling can be preempted, but the task cannot be frozen until it has
5658
* dropped all locks (userspace tasks are frozen via a fake signal).
5659
*/
5660
lockdep_assert_not_held(&kvm_usage_lock);
5661
lockdep_assert_irqs_disabled();
5662
5663
kvm_disable_virtualization_cpu(NULL);
5664
return 0;
5665
}
5666
5667
static void kvm_resume(void)
5668
{
5669
lockdep_assert_not_held(&kvm_usage_lock);
5670
lockdep_assert_irqs_disabled();
5671
5672
WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5673
}
5674
5675
static struct syscore_ops kvm_syscore_ops = {
5676
.suspend = kvm_suspend,
5677
.resume = kvm_resume,
5678
.shutdown = kvm_shutdown,
5679
};
5680
5681
int kvm_enable_virtualization(void)
5682
{
5683
int r;
5684
5685
guard(mutex)(&kvm_usage_lock);
5686
5687
if (kvm_usage_count++)
5688
return 0;
5689
5690
kvm_arch_enable_virtualization();
5691
5692
r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5693
kvm_online_cpu, kvm_offline_cpu);
5694
if (r)
5695
goto err_cpuhp;
5696
5697
register_syscore_ops(&kvm_syscore_ops);
5698
5699
/*
5700
* Undo virtualization enabling and bail if the system is going down.
5701
* If userspace initiated a forced reboot, e.g. reboot -f, then it's
5702
* possible for an in-flight operation to enable virtualization after
5703
* syscore_shutdown() is called, i.e. without kvm_shutdown() being
5704
* invoked. Note, this relies on system_state being set _before_
5705
* kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5706
* or this CPU observes the impending shutdown. Which is why KVM uses
5707
* a syscore ops hook instead of registering a dedicated reboot
5708
* notifier (the latter runs before system_state is updated).
5709
*/
5710
if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5711
system_state == SYSTEM_RESTART) {
5712
r = -EBUSY;
5713
goto err_rebooting;
5714
}
5715
5716
return 0;
5717
5718
err_rebooting:
5719
unregister_syscore_ops(&kvm_syscore_ops);
5720
cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5721
err_cpuhp:
5722
kvm_arch_disable_virtualization();
5723
--kvm_usage_count;
5724
return r;
5725
}
5726
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_virtualization);
5727
5728
void kvm_disable_virtualization(void)
5729
{
5730
guard(mutex)(&kvm_usage_lock);
5731
5732
if (--kvm_usage_count)
5733
return;
5734
5735
unregister_syscore_ops(&kvm_syscore_ops);
5736
cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5737
kvm_arch_disable_virtualization();
5738
}
5739
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_disable_virtualization);
5740
5741
static int kvm_init_virtualization(void)
5742
{
5743
if (enable_virt_at_load)
5744
return kvm_enable_virtualization();
5745
5746
return 0;
5747
}
5748
5749
static void kvm_uninit_virtualization(void)
5750
{
5751
if (enable_virt_at_load)
5752
kvm_disable_virtualization();
5753
}
5754
#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5755
static int kvm_init_virtualization(void)
5756
{
5757
return 0;
5758
}
5759
5760
static void kvm_uninit_virtualization(void)
5761
{
5762
5763
}
5764
#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5765
5766
static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5767
{
5768
if (dev->ops->destructor)
5769
dev->ops->destructor(dev);
5770
}
5771
5772
static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5773
{
5774
int i;
5775
5776
for (i = 0; i < bus->dev_count; i++) {
5777
struct kvm_io_device *pos = bus->range[i].dev;
5778
5779
kvm_iodevice_destructor(pos);
5780
}
5781
kfree(bus);
5782
}
5783
5784
static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5785
const struct kvm_io_range *r2)
5786
{
5787
gpa_t addr1 = r1->addr;
5788
gpa_t addr2 = r2->addr;
5789
5790
if (addr1 < addr2)
5791
return -1;
5792
5793
/* If r2->len == 0, match the exact address. If r2->len != 0,
5794
* accept any overlapping write. Any order is acceptable for
5795
* overlapping ranges, because kvm_io_bus_get_first_dev ensures
5796
* we process all of them.
5797
*/
5798
if (r2->len) {
5799
addr1 += r1->len;
5800
addr2 += r2->len;
5801
}
5802
5803
if (addr1 > addr2)
5804
return 1;
5805
5806
return 0;
5807
}
5808
5809
static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5810
{
5811
return kvm_io_bus_cmp(p1, p2);
5812
}
5813
5814
static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5815
gpa_t addr, int len)
5816
{
5817
struct kvm_io_range *range, key;
5818
int off;
5819
5820
key = (struct kvm_io_range) {
5821
.addr = addr,
5822
.len = len,
5823
};
5824
5825
range = bsearch(&key, bus->range, bus->dev_count,
5826
sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5827
if (range == NULL)
5828
return -ENOENT;
5829
5830
off = range - bus->range;
5831
5832
while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5833
off--;
5834
5835
return off;
5836
}
5837
5838
static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5839
struct kvm_io_range *range, const void *val)
5840
{
5841
int idx;
5842
5843
idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5844
if (idx < 0)
5845
return -EOPNOTSUPP;
5846
5847
while (idx < bus->dev_count &&
5848
kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5849
if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5850
range->len, val))
5851
return idx;
5852
idx++;
5853
}
5854
5855
return -EOPNOTSUPP;
5856
}
5857
5858
static struct kvm_io_bus *kvm_get_bus_srcu(struct kvm *kvm, enum kvm_bus idx)
5859
{
5860
/*
5861
* Ensure that any updates to kvm_buses[] observed by the previous vCPU
5862
* machine instruction are also visible to the vCPU machine instruction
5863
* that triggered this call.
5864
*/
5865
smp_mb__after_srcu_read_lock();
5866
5867
return srcu_dereference(kvm->buses[idx], &kvm->srcu);
5868
}
5869
5870
int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5871
int len, const void *val)
5872
{
5873
struct kvm_io_bus *bus;
5874
struct kvm_io_range range;
5875
int r;
5876
5877
range = (struct kvm_io_range) {
5878
.addr = addr,
5879
.len = len,
5880
};
5881
5882
bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx);
5883
if (!bus)
5884
return -ENOMEM;
5885
r = __kvm_io_bus_write(vcpu, bus, &range, val);
5886
return r < 0 ? r : 0;
5887
}
5888
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_write);
5889
5890
int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5891
gpa_t addr, int len, const void *val, long cookie)
5892
{
5893
struct kvm_io_bus *bus;
5894
struct kvm_io_range range;
5895
5896
range = (struct kvm_io_range) {
5897
.addr = addr,
5898
.len = len,
5899
};
5900
5901
bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx);
5902
if (!bus)
5903
return -ENOMEM;
5904
5905
/* First try the device referenced by cookie. */
5906
if ((cookie >= 0) && (cookie < bus->dev_count) &&
5907
(kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5908
if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5909
val))
5910
return cookie;
5911
5912
/*
5913
* cookie contained garbage; fall back to search and return the
5914
* correct cookie value.
5915
*/
5916
return __kvm_io_bus_write(vcpu, bus, &range, val);
5917
}
5918
5919
static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5920
struct kvm_io_range *range, void *val)
5921
{
5922
int idx;
5923
5924
idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5925
if (idx < 0)
5926
return -EOPNOTSUPP;
5927
5928
while (idx < bus->dev_count &&
5929
kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5930
if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5931
range->len, val))
5932
return idx;
5933
idx++;
5934
}
5935
5936
return -EOPNOTSUPP;
5937
}
5938
5939
int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5940
int len, void *val)
5941
{
5942
struct kvm_io_bus *bus;
5943
struct kvm_io_range range;
5944
int r;
5945
5946
range = (struct kvm_io_range) {
5947
.addr = addr,
5948
.len = len,
5949
};
5950
5951
bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx);
5952
if (!bus)
5953
return -ENOMEM;
5954
r = __kvm_io_bus_read(vcpu, bus, &range, val);
5955
return r < 0 ? r : 0;
5956
}
5957
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_read);
5958
5959
static void __free_bus(struct rcu_head *rcu)
5960
{
5961
struct kvm_io_bus *bus = container_of(rcu, struct kvm_io_bus, rcu);
5962
5963
kfree(bus);
5964
}
5965
5966
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5967
int len, struct kvm_io_device *dev)
5968
{
5969
int i;
5970
struct kvm_io_bus *new_bus, *bus;
5971
struct kvm_io_range range;
5972
5973
lockdep_assert_held(&kvm->slots_lock);
5974
5975
bus = kvm_get_bus(kvm, bus_idx);
5976
if (!bus)
5977
return -ENOMEM;
5978
5979
/* exclude ioeventfd which is limited by maximum fd */
5980
if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5981
return -ENOSPC;
5982
5983
new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5984
GFP_KERNEL_ACCOUNT);
5985
if (!new_bus)
5986
return -ENOMEM;
5987
5988
range = (struct kvm_io_range) {
5989
.addr = addr,
5990
.len = len,
5991
.dev = dev,
5992
};
5993
5994
for (i = 0; i < bus->dev_count; i++)
5995
if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5996
break;
5997
5998
memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5999
new_bus->dev_count++;
6000
new_bus->range[i] = range;
6001
memcpy(new_bus->range + i + 1, bus->range + i,
6002
(bus->dev_count - i) * sizeof(struct kvm_io_range));
6003
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6004
call_srcu(&kvm->srcu, &bus->rcu, __free_bus);
6005
6006
return 0;
6007
}
6008
6009
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6010
struct kvm_io_device *dev)
6011
{
6012
int i;
6013
struct kvm_io_bus *new_bus, *bus;
6014
6015
lockdep_assert_held(&kvm->slots_lock);
6016
6017
bus = kvm_get_bus(kvm, bus_idx);
6018
if (!bus)
6019
return 0;
6020
6021
for (i = 0; i < bus->dev_count; i++) {
6022
if (bus->range[i].dev == dev) {
6023
break;
6024
}
6025
}
6026
6027
if (i == bus->dev_count)
6028
return 0;
6029
6030
new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
6031
GFP_KERNEL_ACCOUNT);
6032
if (new_bus) {
6033
memcpy(new_bus, bus, struct_size(bus, range, i));
6034
new_bus->dev_count--;
6035
memcpy(new_bus->range + i, bus->range + i + 1,
6036
flex_array_size(new_bus, range, new_bus->dev_count - i));
6037
}
6038
6039
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6040
synchronize_srcu_expedited(&kvm->srcu);
6041
6042
/*
6043
* If NULL bus is installed, destroy the old bus, including all the
6044
* attached devices. Otherwise, destroy the caller's device only.
6045
*/
6046
if (!new_bus) {
6047
pr_err("kvm: failed to shrink bus, removing it completely\n");
6048
kvm_io_bus_destroy(bus);
6049
return -ENOMEM;
6050
}
6051
6052
kvm_iodevice_destructor(dev);
6053
kfree(bus);
6054
return 0;
6055
}
6056
6057
struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6058
gpa_t addr)
6059
{
6060
struct kvm_io_bus *bus;
6061
int dev_idx, srcu_idx;
6062
struct kvm_io_device *iodev = NULL;
6063
6064
srcu_idx = srcu_read_lock(&kvm->srcu);
6065
6066
bus = kvm_get_bus_srcu(kvm, bus_idx);
6067
if (!bus)
6068
goto out_unlock;
6069
6070
dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6071
if (dev_idx < 0)
6072
goto out_unlock;
6073
6074
iodev = bus->range[dev_idx].dev;
6075
6076
out_unlock:
6077
srcu_read_unlock(&kvm->srcu, srcu_idx);
6078
6079
return iodev;
6080
}
6081
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_get_dev);
6082
6083
static int kvm_debugfs_open(struct inode *inode, struct file *file,
6084
int (*get)(void *, u64 *), int (*set)(void *, u64),
6085
const char *fmt)
6086
{
6087
int ret;
6088
struct kvm_stat_data *stat_data = inode->i_private;
6089
6090
/*
6091
* The debugfs files are a reference to the kvm struct which
6092
* is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
6093
* avoids the race between open and the removal of the debugfs directory.
6094
*/
6095
if (!kvm_get_kvm_safe(stat_data->kvm))
6096
return -ENOENT;
6097
6098
ret = simple_attr_open(inode, file, get,
6099
kvm_stats_debugfs_mode(stat_data->desc) & 0222
6100
? set : NULL, fmt);
6101
if (ret)
6102
kvm_put_kvm(stat_data->kvm);
6103
6104
return ret;
6105
}
6106
6107
static int kvm_debugfs_release(struct inode *inode, struct file *file)
6108
{
6109
struct kvm_stat_data *stat_data = inode->i_private;
6110
6111
simple_attr_release(inode, file);
6112
kvm_put_kvm(stat_data->kvm);
6113
6114
return 0;
6115
}
6116
6117
static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6118
{
6119
*val = *(u64 *)((void *)(&kvm->stat) + offset);
6120
6121
return 0;
6122
}
6123
6124
static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6125
{
6126
*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6127
6128
return 0;
6129
}
6130
6131
static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6132
{
6133
unsigned long i;
6134
struct kvm_vcpu *vcpu;
6135
6136
*val = 0;
6137
6138
kvm_for_each_vcpu(i, vcpu, kvm)
6139
*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6140
6141
return 0;
6142
}
6143
6144
static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6145
{
6146
unsigned long i;
6147
struct kvm_vcpu *vcpu;
6148
6149
kvm_for_each_vcpu(i, vcpu, kvm)
6150
*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6151
6152
return 0;
6153
}
6154
6155
static int kvm_stat_data_get(void *data, u64 *val)
6156
{
6157
int r = -EFAULT;
6158
struct kvm_stat_data *stat_data = data;
6159
6160
switch (stat_data->kind) {
6161
case KVM_STAT_VM:
6162
r = kvm_get_stat_per_vm(stat_data->kvm,
6163
stat_data->desc->desc.offset, val);
6164
break;
6165
case KVM_STAT_VCPU:
6166
r = kvm_get_stat_per_vcpu(stat_data->kvm,
6167
stat_data->desc->desc.offset, val);
6168
break;
6169
}
6170
6171
return r;
6172
}
6173
6174
static int kvm_stat_data_clear(void *data, u64 val)
6175
{
6176
int r = -EFAULT;
6177
struct kvm_stat_data *stat_data = data;
6178
6179
if (val)
6180
return -EINVAL;
6181
6182
switch (stat_data->kind) {
6183
case KVM_STAT_VM:
6184
r = kvm_clear_stat_per_vm(stat_data->kvm,
6185
stat_data->desc->desc.offset);
6186
break;
6187
case KVM_STAT_VCPU:
6188
r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6189
stat_data->desc->desc.offset);
6190
break;
6191
}
6192
6193
return r;
6194
}
6195
6196
static int kvm_stat_data_open(struct inode *inode, struct file *file)
6197
{
6198
__simple_attr_check_format("%llu\n", 0ull);
6199
return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6200
kvm_stat_data_clear, "%llu\n");
6201
}
6202
6203
static const struct file_operations stat_fops_per_vm = {
6204
.owner = THIS_MODULE,
6205
.open = kvm_stat_data_open,
6206
.release = kvm_debugfs_release,
6207
.read = simple_attr_read,
6208
.write = simple_attr_write,
6209
};
6210
6211
static int vm_stat_get(void *_offset, u64 *val)
6212
{
6213
unsigned offset = (long)_offset;
6214
struct kvm *kvm;
6215
u64 tmp_val;
6216
6217
*val = 0;
6218
mutex_lock(&kvm_lock);
6219
list_for_each_entry(kvm, &vm_list, vm_list) {
6220
kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6221
*val += tmp_val;
6222
}
6223
mutex_unlock(&kvm_lock);
6224
return 0;
6225
}
6226
6227
static int vm_stat_clear(void *_offset, u64 val)
6228
{
6229
unsigned offset = (long)_offset;
6230
struct kvm *kvm;
6231
6232
if (val)
6233
return -EINVAL;
6234
6235
mutex_lock(&kvm_lock);
6236
list_for_each_entry(kvm, &vm_list, vm_list) {
6237
kvm_clear_stat_per_vm(kvm, offset);
6238
}
6239
mutex_unlock(&kvm_lock);
6240
6241
return 0;
6242
}
6243
6244
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6245
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6246
6247
static int vcpu_stat_get(void *_offset, u64 *val)
6248
{
6249
unsigned offset = (long)_offset;
6250
struct kvm *kvm;
6251
u64 tmp_val;
6252
6253
*val = 0;
6254
mutex_lock(&kvm_lock);
6255
list_for_each_entry(kvm, &vm_list, vm_list) {
6256
kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6257
*val += tmp_val;
6258
}
6259
mutex_unlock(&kvm_lock);
6260
return 0;
6261
}
6262
6263
static int vcpu_stat_clear(void *_offset, u64 val)
6264
{
6265
unsigned offset = (long)_offset;
6266
struct kvm *kvm;
6267
6268
if (val)
6269
return -EINVAL;
6270
6271
mutex_lock(&kvm_lock);
6272
list_for_each_entry(kvm, &vm_list, vm_list) {
6273
kvm_clear_stat_per_vcpu(kvm, offset);
6274
}
6275
mutex_unlock(&kvm_lock);
6276
6277
return 0;
6278
}
6279
6280
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6281
"%llu\n");
6282
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6283
6284
static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6285
{
6286
struct kobj_uevent_env *env;
6287
unsigned long long created, active;
6288
6289
if (!kvm_dev.this_device || !kvm)
6290
return;
6291
6292
mutex_lock(&kvm_lock);
6293
if (type == KVM_EVENT_CREATE_VM) {
6294
kvm_createvm_count++;
6295
kvm_active_vms++;
6296
} else if (type == KVM_EVENT_DESTROY_VM) {
6297
kvm_active_vms--;
6298
}
6299
created = kvm_createvm_count;
6300
active = kvm_active_vms;
6301
mutex_unlock(&kvm_lock);
6302
6303
env = kzalloc(sizeof(*env), GFP_KERNEL);
6304
if (!env)
6305
return;
6306
6307
add_uevent_var(env, "CREATED=%llu", created);
6308
add_uevent_var(env, "COUNT=%llu", active);
6309
6310
if (type == KVM_EVENT_CREATE_VM) {
6311
add_uevent_var(env, "EVENT=create");
6312
kvm->userspace_pid = task_pid_nr(current);
6313
} else if (type == KVM_EVENT_DESTROY_VM) {
6314
add_uevent_var(env, "EVENT=destroy");
6315
}
6316
add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6317
6318
if (!IS_ERR(kvm->debugfs_dentry)) {
6319
char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6320
6321
if (p) {
6322
tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6323
if (!IS_ERR(tmp))
6324
add_uevent_var(env, "STATS_PATH=%s", tmp);
6325
kfree(p);
6326
}
6327
}
6328
/* no need for checks, since we are adding at most only 5 keys */
6329
env->envp[env->envp_idx++] = NULL;
6330
kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6331
kfree(env);
6332
}
6333
6334
static void kvm_init_debug(void)
6335
{
6336
const struct file_operations *fops;
6337
const struct _kvm_stats_desc *pdesc;
6338
int i;
6339
6340
kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6341
6342
for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6343
pdesc = &kvm_vm_stats_desc[i];
6344
if (kvm_stats_debugfs_mode(pdesc) & 0222)
6345
fops = &vm_stat_fops;
6346
else
6347
fops = &vm_stat_readonly_fops;
6348
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6349
kvm_debugfs_dir,
6350
(void *)(long)pdesc->desc.offset, fops);
6351
}
6352
6353
for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6354
pdesc = &kvm_vcpu_stats_desc[i];
6355
if (kvm_stats_debugfs_mode(pdesc) & 0222)
6356
fops = &vcpu_stat_fops;
6357
else
6358
fops = &vcpu_stat_readonly_fops;
6359
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6360
kvm_debugfs_dir,
6361
(void *)(long)pdesc->desc.offset, fops);
6362
}
6363
}
6364
6365
static inline
6366
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6367
{
6368
return container_of(pn, struct kvm_vcpu, preempt_notifier);
6369
}
6370
6371
static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6372
{
6373
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6374
6375
WRITE_ONCE(vcpu->preempted, false);
6376
WRITE_ONCE(vcpu->ready, false);
6377
6378
__this_cpu_write(kvm_running_vcpu, vcpu);
6379
kvm_arch_vcpu_load(vcpu, cpu);
6380
6381
WRITE_ONCE(vcpu->scheduled_out, false);
6382
}
6383
6384
static void kvm_sched_out(struct preempt_notifier *pn,
6385
struct task_struct *next)
6386
{
6387
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6388
6389
WRITE_ONCE(vcpu->scheduled_out, true);
6390
6391
if (task_is_runnable(current) && vcpu->wants_to_run) {
6392
WRITE_ONCE(vcpu->preempted, true);
6393
WRITE_ONCE(vcpu->ready, true);
6394
}
6395
kvm_arch_vcpu_put(vcpu);
6396
__this_cpu_write(kvm_running_vcpu, NULL);
6397
}
6398
6399
/**
6400
* kvm_get_running_vcpu - get the vcpu running on the current CPU.
6401
*
6402
* We can disable preemption locally around accessing the per-CPU variable,
6403
* and use the resolved vcpu pointer after enabling preemption again,
6404
* because even if the current thread is migrated to another CPU, reading
6405
* the per-CPU value later will give us the same value as we update the
6406
* per-CPU variable in the preempt notifier handlers.
6407
*/
6408
struct kvm_vcpu *kvm_get_running_vcpu(void)
6409
{
6410
struct kvm_vcpu *vcpu;
6411
6412
preempt_disable();
6413
vcpu = __this_cpu_read(kvm_running_vcpu);
6414
preempt_enable();
6415
6416
return vcpu;
6417
}
6418
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_running_vcpu);
6419
6420
/**
6421
* kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6422
*/
6423
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6424
{
6425
return &kvm_running_vcpu;
6426
}
6427
6428
#ifdef CONFIG_GUEST_PERF_EVENTS
6429
static unsigned int kvm_guest_state(void)
6430
{
6431
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6432
unsigned int state;
6433
6434
if (!kvm_arch_pmi_in_guest(vcpu))
6435
return 0;
6436
6437
state = PERF_GUEST_ACTIVE;
6438
if (!kvm_arch_vcpu_in_kernel(vcpu))
6439
state |= PERF_GUEST_USER;
6440
6441
return state;
6442
}
6443
6444
static unsigned long kvm_guest_get_ip(void)
6445
{
6446
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6447
6448
/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6449
if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6450
return 0;
6451
6452
return kvm_arch_vcpu_get_ip(vcpu);
6453
}
6454
6455
static struct perf_guest_info_callbacks kvm_guest_cbs = {
6456
.state = kvm_guest_state,
6457
.get_ip = kvm_guest_get_ip,
6458
.handle_intel_pt_intr = NULL,
6459
};
6460
6461
void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6462
{
6463
kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6464
perf_register_guest_info_callbacks(&kvm_guest_cbs);
6465
}
6466
void kvm_unregister_perf_callbacks(void)
6467
{
6468
perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6469
}
6470
#endif
6471
6472
int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6473
{
6474
int r;
6475
int cpu;
6476
6477
/* A kmem cache lets us meet the alignment requirements of fx_save. */
6478
if (!vcpu_align)
6479
vcpu_align = __alignof__(struct kvm_vcpu);
6480
kvm_vcpu_cache =
6481
kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6482
SLAB_ACCOUNT,
6483
offsetof(struct kvm_vcpu, arch),
6484
offsetofend(struct kvm_vcpu, stats_id)
6485
- offsetof(struct kvm_vcpu, arch),
6486
NULL);
6487
if (!kvm_vcpu_cache)
6488
return -ENOMEM;
6489
6490
for_each_possible_cpu(cpu) {
6491
if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6492
GFP_KERNEL, cpu_to_node(cpu))) {
6493
r = -ENOMEM;
6494
goto err_cpu_kick_mask;
6495
}
6496
}
6497
6498
r = kvm_irqfd_init();
6499
if (r)
6500
goto err_irqfd;
6501
6502
r = kvm_async_pf_init();
6503
if (r)
6504
goto err_async_pf;
6505
6506
kvm_chardev_ops.owner = module;
6507
kvm_vm_fops.owner = module;
6508
kvm_vcpu_fops.owner = module;
6509
kvm_device_fops.owner = module;
6510
6511
kvm_preempt_ops.sched_in = kvm_sched_in;
6512
kvm_preempt_ops.sched_out = kvm_sched_out;
6513
6514
kvm_init_debug();
6515
6516
r = kvm_vfio_ops_init();
6517
if (WARN_ON_ONCE(r))
6518
goto err_vfio;
6519
6520
kvm_gmem_init(module);
6521
6522
r = kvm_init_virtualization();
6523
if (r)
6524
goto err_virt;
6525
6526
/*
6527
* Registration _must_ be the very last thing done, as this exposes
6528
* /dev/kvm to userspace, i.e. all infrastructure must be setup!
6529
*/
6530
r = misc_register(&kvm_dev);
6531
if (r) {
6532
pr_err("kvm: misc device register failed\n");
6533
goto err_register;
6534
}
6535
6536
return 0;
6537
6538
err_register:
6539
kvm_uninit_virtualization();
6540
err_virt:
6541
kvm_vfio_ops_exit();
6542
err_vfio:
6543
kvm_async_pf_deinit();
6544
err_async_pf:
6545
kvm_irqfd_exit();
6546
err_irqfd:
6547
err_cpu_kick_mask:
6548
for_each_possible_cpu(cpu)
6549
free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6550
kmem_cache_destroy(kvm_vcpu_cache);
6551
return r;
6552
}
6553
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init);
6554
6555
void kvm_exit(void)
6556
{
6557
int cpu;
6558
6559
/*
6560
* Note, unregistering /dev/kvm doesn't strictly need to come first,
6561
* fops_get(), a.k.a. try_module_get(), prevents acquiring references
6562
* to KVM while the module is being stopped.
6563
*/
6564
misc_deregister(&kvm_dev);
6565
6566
kvm_uninit_virtualization();
6567
6568
debugfs_remove_recursive(kvm_debugfs_dir);
6569
for_each_possible_cpu(cpu)
6570
free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6571
kmem_cache_destroy(kvm_vcpu_cache);
6572
kvm_vfio_ops_exit();
6573
kvm_async_pf_deinit();
6574
kvm_irqfd_exit();
6575
}
6576
EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_exit);
6577
6578