Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563666 views

##########################################################################
#0
#F  ConjugateSL2ZGroup
##
##  This function will create a conjugation of group SL2Z[1/m]
##  by a matrix P by giving its generator and also set name for that 
##  group of conjugation.
##
##  Input: An Arithmetic group G=SL2Z(1/m) and 
##         a invertible 2x2 matrix P 
##  Output: Conjugation group of G by matrix P 
##             
##
InstallGlobalFunction(ConjugateSL2ZGroup,
function(H,P)
local m,gens,i,j, G,gensG,NameH,p;
    p:=P[2][2];
    if H=SL(2,Integers) then 
        return SL2Z(p);
    fi;
    NameH:=Name(H);
    i:=Position(NameH,'/');
    j:=Position(NameH,']');
    m:=Int(NameH{[i+1..j-1]});

    gens:=GeneratorsOfGroup(SL2Z(1/m));
    gensG:=List(gens,x->P*x*(P^-1));
    G:=Group(gensG);
    SetName(G,Concatenation("SL(2,Z[",String(1/m),"])^",
                                              String(P))  );
    G!.coprimes:=[m,p];
    SetIsHAPRationalMatrixGroup(G,true);
    SetIsHAPRationalSpecialLinearGroup(G,true);

    return G;
end);
################### end of ConjugateSL2ZGroup ############################






##########################################################################
#0
#F  CongruenceSubgroup
##
##  This function will create a congruence subgroup gamma 0 of 
##  the arithmetic group SL2Z[1/m] of level p. It is also
##  set a name and some properties for such a group.
##
##  Input: A pair of positive integers (m,p) 
##         
##  Output: The congruence subgroup of SL2Z(1/m) of level p
##             
##
InstallGlobalFunction(CongruenceSubgroup,
function(m,p)
local H,K,G;
    if m=1 then 
        return CongruenceSubgroupGamma0(p);
    fi;
    H:=SL2Z(1/m);
    K:=ConjugateSL2ZGroup(H,[[1,0],[0,p]]);
    G:=Intersection(H,K);
    SetName(G,Concatenation("CongruenceSubgroup of ",Name(H)," level ",
                                                           String(p)));
    G!.levels:=[m,p];
    SetIsHAPRationalMatrixGroup(G,true);
    SetIsHAPRationalSpecialLinearGroup(G,true);
    return G;
end);
##
################### end of CongruenceSubgroup ############################