Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563661 views
#(C) Graham Ellis, 2005-2006
cnt:=0;
#####################################################################
InstallGlobalFunction(PrimePartDerivedFunctorViaSubgroupChain,
function(GG,R,F,n)
local
	G,C,P,P1, prime, AscChn, HP, HPrels, AddRels, Q,
        DCRS, L, S, f,fx, imfx, bool, dcrs,
	HK, HPK, HKhomHPK, HPKhomHP, HKhomHP, HKx,HPKx, 
	HKxhomHPKx, HPKxhomHP, HKxhomHP, HKhomHKx,  HKhomHP2,
	x, y, i, Cent, hh, HPpres, ord;

####################################
####################################
P:=R!.group;
prime:=PrimePGroup(P);
C:=F(R);

if IsGroup(GG) then G:=GG; 
P1:=Normalizer(G,P);

AscChn:=AscendingChain(G,P1);
fi;
if IsList(GG) then G:=GG[Length(GG)]; 
AscChn:=GG;
P1:=Normalizer(G,P);

fi;

HP:=GroupHomomorphismByFunction(P,P,x->x);
HP:=EquivariantChainMap(R,R,HP);
HP:=F(HP);
HP:=Homology(HP,n);
HP:=Source(HP);
if Length(AbelianInvariants(HP))=0 then return []; fi;
HPrels:=[Identity(HP)];
####################################
####################################


#########################################
#########################################
AddRels:=function(Q,L)  #Here P < Q < G where P=Syl_p(G)
local i, hh, Lhh, gg, g, gg1, h, sylQQ, QQ, xx;

QQ:=Intersection(Q,Q^L);
sylQQ:=SylowSubgroup(QQ,prime);
gg:=false;
for g in Q do
if IsSubgroup(P,sylQQ^g) then gg:=g;  break; fi;
od;

if not Order(sylQQ)>1 then return; fi;

#########################################
#########################################
if Order(P)/Order(sylQQ)>1 then  #NEED TO OPTIMIZETHIS CHOICE!!
S:=ResolutionGenericGroup(sylQQ,n+1);
else
S:=ResolutionFiniteSubgroup(R,sylQQ^gg);
S!.group:=sylQQ;
gg1:=gg^-1;
S!.elts:=List(S!.elts,x->x^(gg1));
fi;
#########################################
#########################################

hh:=Homology(F(S),n);
if IsInt(hh) then hh:=List([1..hh],i->0); fi;
if not Length(hh)>0 then return; fi;
f:=GroupHomomorphismByFunction(sylQQ,P,x->x^gg);
xx:=F(EquivariantChainMap(S,R,f));;
HKhomHPK:=Homology(xx,n);
HK:=Source(HKhomHPK);
HPK:=Range(HKhomHPK);
HPKhomHP:=GroupHomomorphismByImagesNC(HPK,HP,GeneratorsOfGroup(HPK),
                                                  GeneratorsOfGroup(HP));
HKhomHP:=GroupHomomorphismByFunction(HK,HP,x->
Image(HPKhomHP, Image(HKhomHPK,x) ) );


fx:=GroupHomomorphismByFunction(sylQQ,Q,g->g^(L^-1));
imfx:=Image(fx);
hh:=false;
for h in Q do
if IsSubgroup(P,imfx^h) then hh:=h; break; fi;
od;
Lhh:=L^-1*hh;
#fx:=GroupHomomorphismByFunction(sylQQ,P,g->(g^(L^-1))^hh);
fx:=GroupHomomorphismByFunction(sylQQ,P,g->g^Lhh);

xx:=F(EquivariantChainMap(S,R,fx));
HKxhomHPKx:=Homology(xx,n);
HKx:=Source(HKxhomHPKx);
HPKx:=Parent(Image(HKxhomHPKx));
HPKxhomHP:=GroupHomomorphismByImagesNC(HPKx,HP,GeneratorsOfGroup(HPKx),
                                                  GeneratorsOfGroup(HP));
HKxhomHP:=GroupHomomorphismByFunction(HKx,HP,x->
Image(HPKxhomHP, Image(HKxhomHPKx,x) ) );
HKhomHKx:=GroupHomomorphismByImagesNC(HK,HKx,GeneratorsOfGroup(HK),GeneratorsOfGroup(HKx));
HKhomHP2:=GroupHomomorphismByFunction(HK,HP,a->
Image(HKxhomHP, Image(HKhomHKx,a)));

for x in GeneratorsOfGroup(HK) do
Append(HPrels, [Image(HKhomHP,x)*Image(HKhomHP2,x)^-1]);
od;

end;
#############################################
#############################################

####################################
####################################

ord:=function(x,y); return Order(x)<Order(y); end; 
if Order(P1)>Order(P) then 
DCRS:=SmallGeneratingSet(P1);
   for L in DCRS do
   AddRels(P,L);
   od;
fi;
for i in [2..Length(AscChn)] do

DCRS:=List(DoubleCosetRepsAndSizes(AscChn[i],AscChn[i-1],AscChn[i-1]),
x->x[1]);
Cent:=Centralizer(AscChn[i],AscChn[i-1]);


Sort(DCRS,ord);
DCRS:=Filtered(DCRS,a->not a in Cent);
dcrs:=[];
for x in DCRS do
bool:=true;
for y in dcrs do
if y^-1*x in Cent or y^-1*x in P or x in Group(y) then bool:=false; break; fi;
od;
if bool then Add(dcrs,x); fi;
od;

   for L in dcrs do
   cnt:=cnt+1;
   AddRels(AscChn[i-1],L);
   od;
od;
#########################################
#########################################



return AbelianInvariants(HP/NormalClosure(HP,Group(HPrels)));
end);
#####################################################################