GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
<Verb>ChainMap(X,A,Y,B):: PureCubicalComplex, PureCubicalComplex, PureCubicalComplex, PureCubicalComplex --> ChainMap</Verb>1<Verb>ChainMap(f):: RegCWMap --> ChainMap</Verb>2<Verb>ChainMap(f):: SimplicialMap --> ChainComplex</Verb><P/>34<P/>Inputs a pure cubical complex <M>Y</M> and pure cubical sucomplexes5<M>X\subset Y</M>, <M>B\subset Y</M>,<M>A\subset B</M>. It returns the6induced chain map7<M>f_\ast\colon C_\ast(X/A) \rightarrow C_\ast(Y/B)</M> of cellular chain complexes of pairs. (Typlically one takes <M>A</M> and <M>B</M> to be empty or contractible subspaces, in which case <M>C_\ast(X/A) \simeq C_\ast(X)</M>, <M>C_\ast(Y/B) \simeq C_\ast(Y)</M>.)8910<P/> Inputs a map <M>f\colon X \rightarrow Y</M> between two regular11CW-complexes <M>X,Y</M> and returns an induced chain map12<M>f_\ast\colon C_\ast(X) \rightarrow C_\ast(Y)</M> where13<M>C_\ast(X)</M>, <M>C_\ast(Y)</M> are chain homotopic to (but usually smaller than) the cellular chain complexes of <M>X</M>, <M>Y</M>.1415<P/> Inputs a map <M>f\colon X \rightarrow Y</M> between two simplicial16complexes <M>X,Y</M> and returns the induced chain map17<M>f_\ast\colon C_\ast(X) \rightarrow C_\ast(Y)</M> of cellular chain complexes.1819202122232425