GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
<?xml version="1.0" encoding="UTF-8"?>1<Section>2<Heading>Wilf's conjecture</Heading>34Let <M>S</M> be a numerical semigroup, with conductor <M>c</M> and embedding dimension <M>e</M>. Denote by <M>l</M> the cardinality of the set of elements in <M>S</M> smaller than <M>c</M>. Wilf in <Cite Key="Wilf"></Cite> asked whether or not <M>l/c\ge 1/e</M> for all numerical semigroups. In this section we give some functions to experiment with this conjecture, as defined in <Cite Key="E"></Cite>.567<ManSection>8<Attr Name="WilfNumber" Arg="S" Label="for numerical semigroup"/>9<Attr Name="WilfNumberOfNumericalSemigroup" Arg="S"/>10<Description>11<C>S</C>12is a numerical semigroup. Let <M>c</M>, <M>e</M> and <M>l</M> be the conductor, embedding dimension and number of elements smaller than <M>c</M> in <A>S</A>. Returns <M>e l-c</M>, which was conjetured by Wilf to be nonnegative.13<Example><![CDATA[14gap> l:=NumericalSemigroupsWithGenus(10);;15gap> Filtered(l, s->WilfNumberOfNumericalSemigroup(s)<0);16[ ]17gap> Maximum(Set(l, s->WilfNumberOfNumericalSemigroup(s)));187019gap> s := NumericalSemigroup(13,25,37);;20gap> WilfNumber(s);219622]]></Example>23</Description>24</ManSection>252627<ManSection>28<Attr Name="EliahouNumber" Arg="S" Label="for numerical semigroup"/>29<Attr Name="TruncatedWilfNumberOfNumericalSemigroup" Arg="S"/>30<Description>31<C>S</C>32is a numerical semigroup. Let <M>c</M>, <M>m</M>, <M>s</M> and <M>l</M> be the conductor, multiplicity, number of generators smaller than <M>c</M>, and number of elements smaller than <M>c</M> in <A>S</A>, respectively. Let <M>q</M> and <M>r</M> be the quotient and negative remainder of the division of <M>c</M> by <M>m</M>, that is, <M>c=qm-r</M>. Returns <M>s l-qd_q+r</M>, where <M>d_q</M> corresponds with the number of integers in <M>[c,c+m[</M> that are not minimal generators of <A>S</A>.33<Example><![CDATA[34gap> s:=NumericalSemigroup(5,7,9);;35gap> TruncatedWilfNumberOfNumericalSemigroup(s);36437gap> s:=NumericalSemigroupWithGivenElementsAndFrobenius([14,22,23],55);;38gap> EliahouNumber(s);39-140]]></Example>41</Description>42</ManSection>43444546<ManSection>47<Attr Name="ProfileOfNumericalSemigroup" Arg="S"/>48<Description>49<C>S</C>50is a numerical semigroup. Let <M>c</M> and <M>m</M> be the conductor and multiplicity of <A>S</A>, respectively. Let <M>q</M> and <M>r</M> be the quotient and nonpositive remainder of the division of <M>c</M> by <M>m</M>, that is, <M>c=qm-r</M>. Returns a list of lists of integers, each list is the cardinality of <M> S \cap [jm-r, (j+1)m-r[</M> with <M> j</M> in [1..q-1].51<Example><![CDATA[52gap> s:=NumericalSemigroup(5,7,9);;53gap> ProfileOfNumericalSemigroup(s);54[ 2, 1 ]55gap> s:=NumericalSemigroupWithGivenElementsAndFrobenius([14,22,23],55);;56gap> ProfileOfNumericalSemigroup(s);57[ 3, 0, 0 ]58]]></Example>59</Description>60</ManSection>6162<ManSection>63<Attr Name="EliahouSlicesOfNumericalSemigroup" Arg="S"/>64<Description>65<C>S</C>66is a numerical semigroup. Let <M>c</M> and <M>m</M> be the conductor and multiplicity of <A>S</A>, respectively. Let <M>q</M> and <M>r</M> be the quotient and negative remainder of the division of <M>c</M> by <M>m</M>, that is, <M>c=qm-r</M>. Returns a list of lists of integers, each list is the set <M> S \cap [jm-r, (j+1)m-r[</M> with <M> j</M> in [1..q]. So this is a partition of the set of small elements of <A>S</A> (without <M>0</M>).67<Example><![CDATA[68gap> s:=NumericalSemigroup(5,7,9);;69gap> EliahouSlicesOfNumericalSemigroup(s);70[ [ 5, 7 ], [ 9, 10, 12 ] ]71gap> SmallElements(s);72[ 0, 5, 7, 9, 10, 12, 14 ]73]]></Example>74</Description>75</ManSection>767778</Section>798081