GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
<?xml version="1.0" encoding="UTF-8"?>12<!--34Varieties.xml ToricVarieties56Copyright (C) 2011-2012, Sebastian Gutsche, RWTH Aachen University78-->910<Chapter Label="ProjectiveVariety">11<Heading>Projective toric varieties</Heading>1213<Section Label="ProjectiveVariety:Category">14<Heading>Projective toric varieties: Category and Representations</Heading>1516<#Include Label="IsProjectiveToricVariety">1718</Section>1920<Section Label="ProjectiveVariety:Properties">21<Heading>Projective toric varieties: Properties</Heading>2223Projective toric varieties have no additional properties. Remember that projective toric varieties are toric varieties,24so every property of a toric variety is a property of an projective toric variety.2526</Section>2728<Section Label="ProjectiveVariety:Attributes">29<Heading>Projective toric varieties: Attributes</Heading>3031<#Include Label="AffineCone">32<#Include Label="PolytopeOfVariety">33<#Include Label="ProjectiveEmbedding">3435</Section>3637<Section Label="ProjectiveVariety:Methods">38<Heading>Projective toric varieties: Methods</Heading>3940<#Include Label="PolytopeMethod">4142</Section>4344<Section Label="ProjectiveVariety:Constructors">45<Heading>Projective toric varieties: Constructors</Heading>4647The constructors are the same as for toric varieties. Calling them with a polytope will48result in an projective variety.4950</Section>51<Section Label="ProjectiveVariety:Examples">52<Heading>Projective toric varieties: Examples</Heading>53<#Include Label="P1P1PolytopeExample">54</Section>55<!-- ############################################################ -->5657</Chapter>5859