GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
<?xml version="1.0" encoding="UTF-8"?>1<!DOCTYPE file SYSTEM "bibxmlext.dtd">23<file>45<entry id="Ben80"><phdthesis>6<author>7<name><first>D. J.</first><last>Benson</last></name>8</author>9<title>The simple group <M>J_4</M></title>10<school>Cambridge</school>11<year>1980</year>12</phdthesis></entry>1314<entry id="CCNPW85"><book>15<author>16<name><first>J. H.</first><last>Conway</last></name>17<name><first>R. T.</first><last>Curtis</last></name>18<name><first>S. P.</first><last>Norton</last></name>19<name><first>R. A.</first><last>Parker</last></name>20<name><first>R. A.</first><last>Wilson</last></name>21</author>22<title>Atlas of finite groups</title>23<publisher>Oxford University Press</publisher>24<year>1985</year>25<address>Eynsham</address>26<note>Maximal subgroups and ordinary characters for simple groups,27With computational assistance from J. G. Thackray</note>28<isbn>0-19-853199-0</isbn>29<mrnumber>827219 (88g:20025)</mrnumber>30<mrclass>20D05 (20-02)</mrclass>31<mrreviewer>R. L. Griess</mrreviewer>32<other type="pages">xxxiv+252</other>33</book></entry>3435<entry id="GAP4.4"><misc>36<title><Wrap Name="Package">GAP</Wrap> –37<C>G</C>roups, <C>A</C>lgorithms, and <C>P</C>rogramming,38<C>V</C>ersion 4.4</title>39<howpublished><URL>http://www.gap-system.org</URL></howpublished>40<year>2004</year>41<key>GAP</key>42<keywords>groups; *; gap; manual</keywords>43<other type="organization">The GAP <C>G</C>roup</other>44</misc></entry>4546<entry id="GS94"><article>47<author>48<name><first>Robert L.</first><last>Griess Jr. </last></name>49<name><first>Stephen D.</first><last>Smith</last></name>50</author>51<title>Minimal dimensions for modular representations of the52<C>M</C>onster</title>53<journal>Comm. Algebra</journal>54<year>1994</year>55<volume>22</volume>56<number>15</number>57<pages>6279–6294</pages>58<issn>0092-7872</issn>59<mrnumber>1303004 (96a:20021)</mrnumber>60<mrclass>20C34</mrclass>61<mrreviewer>Ulrich Meierfrankenfeld</mrreviewer>62<other type="coden">COALDM</other>63<other type="fjournal">Communications in Algebra</other>64</article></entry>6566<entry id="HHM99"><article>67<author>68<name><first>Anne</first><last>Henke</last></name>69<name><first>Gerhard</first><last>Hiss</last></name>70<name><first>Jürgen</first><last>Müller</last></name>71</author>72<title>The <C><M>7</M></C>-modular decomposition matrices of the sporadic73<C>O</C>'<C>N</C>an group</title>74<journal>J. London Math. Soc. (2)</journal>75<year>1999</year>76<volume>60</volume>77<number>1</number>78<pages>58–70</pages>79<issn>0024-6107</issn>80<mrnumber>1721815 (2000i:20023)</mrnumber>81<mrclass>20C34 (20C20 20C33 20C40)</mrclass>82<mrreviewer>Donald L. White</mrreviewer>83<other type="coden">JLMSAK</other>84<other type="fjournal">Journal of the London Mathematical Society. Second85Series</other>86</article></entry>8788<entry id="Hen93"><mastersthesis>89<author>90<name><first>S.</first><last>Hensing</last></name>91</author>92<title><M>5</M>-modulare <C>Z</C>erlegungszahlen der sporadischen einfachen93<C>G</C>ruppe <C><M>Co_1</M></C> und ihrer Überlagerungsgruppe94<C><M>2.Co_1</M></C></title>95<school>Universität Heidelberg</school>96<year>1993</year>97<type>Diplomarbeit</type>98</mastersthesis></entry>99100<entry id="His94"><article>101<author>102<name><first>Gerhard</first><last>Hiss</last></name>103</author>104<title>The <C><M>3</M></C>-modular characters of the <C>R</C>udvalis105sporadic simple106group and its covering group</title>107<journal>Math. Comp.</journal>108<year>1994</year>109<volume>62</volume>110<number>206</number>111<pages>851–863</pages>112<issn>0025-5718</issn>113<mrnumber>1212267 (94g:20013)</mrnumber>114<mrclass>20C20 (20C34 20D08)</mrclass>115<mrreviewer>P. Fong</mrreviewer>116<other type="coden">MCMPAF</other>117<other type="fjournal">Mathematics of Computation</other>118</article></entry>119120<entry id="His97"><article>121<author>122<name><first>Gerhard</first><last>Hiss</last></name>123</author>124<title>Decomposition matrices of the <C>C</C>hevalley group125<C><M>F_4(2)</M></C>126and its covering group</title>127<journal>Comm. Algebra</journal>128<year>1997</year>129<volume>25</volume>130<number>8</number>131<pages>2539–2555</pages>132<issn>0092-7872</issn>133<mrnumber>1459575 (98d:20016)</mrnumber>134<mrclass>20C33 (20C20 20C40)</mrclass>135<mrreviewer>Julianne G. Rainbolt</mrreviewer>136<other type="coden">COALDM</other>137<other type="fjournal">Communications in Algebra</other>138</article></entry>139140<entry id="HL89"><book>141<author>142<name><first>G.</first><last>Hiss</last></name>143<name><first>K.</first><last>Lux</last></name>144</author>145<title>Brauer trees of sporadic groups</title>146<publisher>The Clarendon Press Oxford University Press</publisher>147<year>1989</year>148<series>Oxford Science Publications</series>149<address>New York</address>150<isbn>0-19-853381-0</isbn>151<mrnumber>1033265 (91k:20018)</mrnumber>152<mrclass>20C20 (20-02 20D08)</mrclass>153<mrreviewer>Harvey Blau</mrreviewer>154<other type="pages">x+526</other>155</book></entry>156157<entry id="HL94"><article>158<author>159<name><first>Gerhard</first><last>Hiss</last></name>160<name><first>Klaus</first><last>Lux</last></name>161</author>162<title>The <C><M>5</M></C>-modular characters of the sporadic simple163<C>F</C>ischer164groups <C><M>{\rm Fi}_{22}</M></C> and <C><M>{\rm Fi}_{23}</M></C></title>165<journal>Comm. Algebra</journal>166<year>1994</year>167<volume>22</volume>168<number>9</number>169<pages>3563–3590</pages>170<note>With an appendix by Thomas Breuer</note>171<issn>0092-7872</issn>172<mrnumber>1278806 (95e:20020)</mrnumber>173<mrclass>20C34 (20C40)</mrclass>174<mrreviewer>A. S. Kondratʹev</mrreviewer>175<other type="coden">COALDM</other>176<other type="fjournal">Communications in Algebra</other>177</article></entry>178179<entry id="HM95"><article>180<author>181<name><first>Gerhard</first><last>Hiss</last></name>182<name><first>Jürgen</first><last>Müller</last></name>183</author>184<title>The <C><M>5</M></C>-modular characters of the sporadic simple185<C>R</C>udvalis186group and its covering group</title>187<journal>Comm. Algebra</journal>188<year>1995</year>189<volume>23</volume>190<number>12</number>191<pages>4633–4667</pages>192<issn>0092-7872</issn>193<mrnumber>1352561 (96h:20027)</mrnumber>194<mrclass>20C34 (20C20)</mrclass>195<mrreviewer>Donald L. White</mrreviewer>196<other type="coden">COALDM</other>197<other type="fjournal">Communications in Algebra</other>198</article></entry>199200<entry id="HW94"><article>201<author>202<name><first>Gerhard</first><last>Hiss</last></name>203<name><first>Donald L.</first><last>White</last></name>204</author>205<title>The <C><M>5</M></C>-modular characters of the covering group of the206sporadic simple <C>F</C>ischer group <C><M>{\rm Fi}_{22}</M></C> and its207automorphism group</title>208<journal>Comm. Algebra</journal>209<year>1994</year>210<volume>22</volume>211<number>9</number>212<pages>3591–3611</pages>213<issn>0092-7872</issn>214<mrnumber>1278807 (95e:20021)</mrnumber>215<mrclass>20C34 (20C40)</mrclass>216<mrreviewer>A. S. Kondratʹev</mrreviewer>217<other type="coden">COALDM</other>218<other type="fjournal">Communications in Algebra</other>219</article></entry>220221<entry id="HJLP"><misc>222<author>223<name><first>G.</first><last>Hiss</last></name>224<name><first>C.</first><last>Jansen</last></name>225<name><first>K.</first><last>Lux</last></name>226<name><first>R. A.</first><last>Parker</last></name>227</author>228<title>Computing with <C>M</C>odular <C>C</C>haracters</title>229<howpublished><URL>http://www.math.rwth-aachen.de/LDFM/homes/MOC/CoMoChaT/</URL></howpublished>230</misc></entry>231232<entry id="Hup98"><book>233<author>234<name><first>Bertram</first><last>Huppert</last></name>235</author>236<title>Character theory of finite groups</title>237<publisher>Walter de Gruyter & Co.</publisher>238<year>1998</year>239<volume>25</volume>240<series>de Gruyter Expositions in Mathematics</series>241<address>Berlin</address>242<isbn>3-11-015421-8</isbn>243<mrnumber>1645304 (99j:20011)</mrnumber>244<mrclass>20C15 (20C05 20C10)</mrclass>245<mrreviewer>Gerhard Hiss</mrreviewer>246<other type="pages">vi+618</other>247</book></entry>248249<entry id="HB82"><book>250<author>251<name><first>Bertram</first><last>Huppert</last></name>252<name><first>Norman</first><last>Blackburn</last></name>253</author>254<title>Finite groups. <C>II</C></title>255<publisher>Springer-Verlag</publisher>256<year>1982</year>257<volume>242</volume>258<series>Grundlehren der Mathematischen Wissenschaften [Fundamental259Principles of Mathematical Sciences]</series>260<address>Berlin</address>261<note>AMD, 44</note>262<isbn>3-540-10632-4</isbn>263<mrnumber>650245 (84i:20001a)</mrnumber>264<mrclass>20-02 (20Dxx)</mrclass>265<other type="pages">xiii+531</other>266</book></entry>267268<entry id="Jan95"><phdthesis>269<author>270<name><first>C.</first><last>Jansen</last></name>271</author>272<title>Ein <C>A</C>tlas <M>3</M>-modularer <C>C</C>haraktertafeln</title>273<school>RWTH Aachen</school>274<year>1995</year>275<type>Dissertation</type>276</phdthesis></entry>277278<entry id="Jan05"><article>279<author>280<name><first>Christoph</first><last>Jansen</last></name>281</author>282<title>The minimal degrees of faithful representations of the283sporadic simple groups and their covering groups</title>284<journal>LMS J. Comput. Math.</journal>285<year>2005</year>286<volume>8</volume>287<pages>122–144 (electronic)</pages>288<issn>1461-1570</issn>289<mrnumber>2153793 (2006e:20026)</mrnumber>290<mrclass>20C34</mrclass>291<mrreviewer>Robert A. Wilson</mrreviewer>292<other type="fjournal">LMS Journal of Computation and Mathematics</other>293</article></entry>294295<entry id="JM97"><article>296<author>297<name><first>Christoph</first><last>Jansen</last></name>298<name><first>Jürgen</first><last>Müller</last></name>299</author>300<title>The <C><M>3</M></C>-modular decomposition numbers of the sporadic301simple302<C>S</C>uzuki group</title>303<journal>Comm. Algebra</journal>304<year>1997</year>305<volume>25</volume>306<number>8</number>307<pages>2437–2458</pages>308<issn>0092-7872</issn>309<mrnumber>1459570 (98e:20019)</mrnumber>310<mrclass>20C34 (20D08)</mrclass>311<mrreviewer>Koichiro Harada</mrreviewer>312<other type="coden">COALDM</other>313<other type="fjournal">Communications in Algebra</other>314</article></entry>315316<entry id="JW96"><article>317<author>318<name><first>C.</first><last>Jansen</last></name>319<name><first>R. A.</first><last>Wilson</last></name>320</author>321<title>The minimal faithful <C><M>3</M></C>-modular representation for the322<C>L</C>yons group</title>323<journal>Comm. Algebra</journal>324<year>1996</year>325<volume>24</volume>326<number>3</number>327<pages>873–879</pages>328<issn>0092-7872</issn>329<mrnumber>1374641 (97a:20021)</mrnumber>330<mrclass>20C34 (20C40 20D08)</mrclass>331<mrreviewer>Herbert Pahlings</mrreviewer>332<other type="coden">COALDM</other>333<other type="fjournal">Communications in Algebra</other>334</article></entry>335336<entry id="JW98"><article>337<author>338<name><first>C.</first><last>Jansen</last></name>339<name><first>R. A.</first><last>Wilson</last></name>340</author>341<title>The <C><M>2</M></C>-modular and <C><M>3</M></C>-modular decomposition342numbers for343the sporadic simple <C>O</C>'<C>N</C>an group and its triple cover</title>344<journal>J. London Math. Soc. (2)</journal>345<year>1998</year>346<volume>57</volume>347<number>1</number>348<pages>71–90</pages>349<issn>0024-6107</issn>350<mrnumber>1624797 (99g:20025)</mrnumber>351<mrclass>20C34 (20C20 20C40)</mrclass>352<mrreviewer>Gerhard Hiss</mrreviewer>353<other type="coden">JLMSAK</other>354<other type="fjournal">Journal of the London Mathematical Society. Second355Series</other>356</article></entry>357358<entry id="JLPW95"><book>359<author>360<name><first>C.</first><last>Jansen</last></name>361<name><first>K.</first><last>Lux</last></name>362<name><first>R.</first><last>Parker</last></name>363<name><first>R.</first><last>Wilson</last></name>364</author>365<title>An atlas of <C>B</C>rauer characters</title>366<publisher>The Clarendon Press Oxford University Press</publisher>367<year>1995</year>368<volume>11</volume>369<series>London Mathematical Society Monographs. New Series</series>370<address>New York</address>371<note>Appendix 2 by T. Breuer and S. Norton, Oxford Science372Publications</note>373<isbn>0-19-851481-6</isbn>374<mrnumber>1367961 (96k:20016)</mrnumber>375<mrclass>20C20 (20-00 20D06 20D08)</mrclass>376<mrreviewer>J. L. Alperin</mrreviewer>377<other type="pages">xviii+327</other>378<other type="printedkey">JLPW95</other>379</book></entry>380381<entry id="MNP85"><article>382<author>383<name><first>Werner</first><last>Meyer</last></name>384<name><first>Wolfram</first><last>Neutsch</last></name>385<name><first>Richard</first><last>Parker</last></name>386</author>387<title>The minimal <C><M>5</M></C>-representation of <C>L</C>yons' sporadic388group</title>389<journal>Math. Ann.</journal>390<year>1985</year>391<volume>272</volume>392<number>1</number>393<pages>29–39</pages>394<issn>0025-5831</issn>395<mrnumber>794089 (86i:20025)</mrnumber>396<mrclass>20D08</mrclass>397<mrreviewer>R. W. Carter</mrreviewer>398<other type="coden">MAANA</other>399<other type="fjournal">Mathematische Annalen</other>400</article></entry>401402<entry id="Mue98"><misc>403<author>404<name><first>Jürgen</first><last>Müller</last></name>405</author>406<title>The <M>5</M>-modular decomposition matrix of the sporadic simple407<C>C</C>onway group <C><M>Co_3</M></C>.</title>408<howpublished>Gloor, Oliver (ed.), Proceedings of the 1998 international409symposium on symbolic and algebraic computation, ISSAC '98,410Rostock, Germany, August 13–15, 1998. New York, NY: ACM Press.411179–185 (1998).</howpublished>412<year>1998</year>413<crossref>Glo98</crossref>414<abstract>Summary: The 5-modular decomposition matrix of the principal415block of the sporadic simple Conway group $Co_3$ is determined.416The results are obtained by a combination of character417theoretic methods and explicit module constructions and418analyses, especially condensation techniques, with the419assistance of the computer algebra systems GAP, MOC, and420MeatAxe.</abstract>421<keywords>$5$-modular decomposition matrices; principal blocks;422sporadic simple Conway group $Co_3$</keywords>423<language>English</language>424<other type="classmath">*20C34 (Representations of sporadic groups)42520C20 (Modular representations and characters of groups)</other>426<other type="zblnumber">0921.20012</other>427</misc></entry>428429<entry id="MR99"><incollection>430<author>431<name><first>Jürgen</first><last>Müller</last></name>432<name><first>Jens</first><last>Rosenboom</last></name>433</author>434<title>Condensation of induced representations and an application:435the <C><M>2</M></C>-modular decomposition numbers of <C><M>{\rm Co}_2</M></C></title>436<booktitle>Computational methods for representations of groups and437algebras (Essen, 1997)</booktitle>438<publisher>Birkhäuser</publisher>439<year>1999</year>440<volume>173</volume>441<series>Progr. Math.</series>442<pages>309–321</pages>443<address>Basel</address>444<crossref>DMR99</crossref>445<mrnumber>1714619 (2000g:20024)</mrnumber>446<mrclass>20C15 (20C40 20D08)</mrclass>447</incollection></entry>448449<entry id="NT89"><book>450<author>451<name><first>Hirosi</first><last>Nagao</last></name>452<name><first>Yukio</first><last>Tsushima</last></name>453</author>454<title>Representations of finite groups</title>455<publisher>Academic Press Inc.</publisher>456<year>1989</year>457<address>Boston, MA</address>458<note>Translated from the Japanese</note>459<isbn>0-12-513660-9</isbn>460<mrnumber>998775 (90h:20008)</mrnumber>461<mrclass>20Cxx (20-01 20C20)</mrclass>462<mrreviewer>Roderick Gow</mrreviewer>463<other type="pages">xviii+424</other>464</book></entry>465466<entry id="Nor88"><article>467<author>468<name><first>Simon P.</first><last>Norton</last></name>469</author>470<title>On the group <C><M>{\rm Fi}_{24}</M></C></title>471<journal>Geom. Dedicata</journal>472<year>1988</year>473<volume>25</volume>474<number>1-3</number>475<pages>483–501</pages>476<note>Geometries and groups (Noordwijkerhout, 1986)</note>477<issn>0046-5755</issn>478<mrnumber>925848 (89k:20024)</mrnumber>479<mrclass>20D08</mrclass>480<other type="coden">GEMDAT</other>481<other type="fjournal">Geometriae Dedicata</other>482</article></entry>483484<entry id="Ryb88b"><article>485<author>486<name><first>A. J. E.</first><last>Ryba</last></name>487</author>488<title>Calculation of the <C><M>7</M></C>-modular characters of the489<C>H</C>eld490group</title>491<journal>J. Algebra</journal>492<year>1988</year>493<volume>117</volume>494<number>1</number>495<pages>240–255</pages>496<issn>0021-8693</issn>497<mrnumber>955602 (89g:20026)</mrnumber>498<mrclass>20C20 (20D08)</mrclass>499<mrreviewer>David Benson</mrreviewer>500<other type="coden">JALGA4</other>501<other type="fjournal">Journal of Algebra</other>502</article></entry>503504<entry id="SW94"><article>505<author>506<name><first>Ibrahim A. I.</first><last>Suleiman</last></name>507<name><first>Robert A.</first><last>Wilson</last></name>508</author>509<title>The <C><M>2</M></C>-modular characters of <C>C</C>onway's group510<C><M>{\rm Co}_2</M></C></title>511<journal>Math. Proc. Cambridge Philos. Soc.</journal>512<year>1994</year>513<volume>116</volume>514<number>2</number>515<pages>275–283</pages>516<issn>0305-0041</issn>517<mrnumber>1281546 (95e:20024)</mrnumber>518<mrclass>20C40 (20C34)</mrclass>519<mrreviewer>Herbert Pahlings</mrreviewer>520<other type="coden">MPCPCO</other>521<other type="fjournal">Mathematical Proceedings of the Cambridge522Philosophical523Society</other>524</article></entry>525526<entry id="SW97"><article>527<author>528<name><first>Ibrahim A. I.</first><last>Suleiman</last></name>529<name><first>Robert A.</first><last>Wilson</last></name>530</author>531<title>The <C><M>2</M></C>-modular characters of <C>C</C>onway's third group532<C><M>{\rm Co}_3</M></C></title>533<journal>J. Symbolic Comput.</journal>534<year>1997</year>535<volume>24</volume>536<number>3-4</number>537<pages>493–506</pages>538<note>Computational algebra and number theory (London, 1993)</note>539<issn>0747-7171</issn>540<mrnumber>1484495 (98k:20018)</mrnumber>541<mrclass>20C34 (20C20 20C40 20D08)</mrclass>542<mrreviewer>Herbert Pahlings</mrreviewer>543<other type="fjournal">Journal of Symbolic Computation</other>544</article></entry>545546<entry id="Wil93c"><article>547<author>548<name><first>Robert A.</first><last>Wilson</last></name>549</author>550<title>A new construction of the <C>B</C>aby <C>M</C>onster and its551applications</title>552<journal>Bull. London Math. Soc.</journal>553<year>1993</year>554<volume>25</volume>555<number>5</number>556<pages>431–437</pages>557<issn>0024-6093</issn>558<mrnumber>1233405 (94k:20027)</mrnumber>559<mrclass>20D08 (20C34 20C40)</mrclass>560<mrreviewer>Richard Lyons</mrreviewer>561<other type="coden">LMSBBT</other>562<other type="fjournal">The Bulletin of the London Mathematical563Society</other>564</article></entry>565566<entry id="Wil"><misc>567<author>568<name><first>Robert A.</first><last>Wilson</last></name>569</author>570<title><Wrap Name="Package">ATLAS</Wrap>571<C>of Finite Group Representations</C></title>572<howpublished><URL>http://brauer.maths.qmul.ac.uk/Atlas/</URL></howpublished>573<key>ATLAS</key>574</misc></entry>575576<entry id="Glo98"><proceedings>577<editor>578<name><first>O.</first><last>Gloor</last></name>579</editor>580<title>Proceedings of the 1998 <C>I</C>nternational <C>S</C>ymposium on581<C>S</C>ymbolic and <C>A</C>lgebraic <C>C</C>omputation</title>582<year>1998</year>583<address>New York</address>584<organization>The Association for Computing Machinery</organization>585<publisher>Association for Computing Machinery (ACM)</publisher>586<note>Held in Rostock, August 13–15, 1998</note>587<key>ACM</key>588<mrnumber>1805195 (2001m:68004)</mrnumber>589<mrclass>68-06 (00B25 68W30)</mrclass>590<other type="pages">front matter+321 pp. (electronic)</other>591</proceedings></entry>592593<entry id="DMR99"><book>594<editor>595<name><first>P.</first><last>Dräxler</last></name>596<name><first>G. O.</first><last>Michler</last></name>597<name><first>C. M.</first><last>Ringel</last></name>598</editor>599<title>Computational methods for representations of groups and600algebras</title>601<publisher>Birkhäuser Verlag</publisher>602<year>1999</year>603<volume>173</volume>604<series>Progress in Mathematics</series>605<address>Basel</address>606<note>Papers from the 1st Euroconference held at the University of607Essen, Essen, April 1–5, 1997</note>608<isbn>3-7643-6063-1</isbn>609<mrnumber>1714600 (2000d:16001)</mrnumber>610<mrclass>16-06 (00B25 20-06)</mrclass>611<other type="pages">xiv+357</other>612</book></entry>613614</file>615616617618