GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
############################################################################ ## #W digraphs.gd Manuel Delgado <[email protected]> #W Jose Morais <[email protected]> ## #H @(#)$Id: digraphs.gi,v 1.13 $ ## #Y Copyright (C) 2004, CMUP, Universidade do Porto, Portugal ## ## ## ############################################################################# ## #F RandomDiGraph(n) ## ## Produces a "random" digraph with n vertices ## DeclareGlobalFunction( "RandomDiGraph" ); ############################################################################# ## #F AutoVertexDegree(DG,v) ## ## Computes the degree of a vertex of a directed graph ## DeclareGlobalFunction( "AutoVertexDegree" ); ############################################################################# ## #F VertexInDegree(DG,v) ## ## Computes the in degree of a vertex of a directed graph ## DeclareGlobalFunction( "VertexInDegree" ); ############################################################################# ## #F VertexOutDegree(DG,v) ## ## Computes the out degree of a vertex of a directed graph ## DeclareGlobalFunction( "VertexOutDegree" ); ############################################################################# ## #F ReversedGraph(G) ## ## Computes the reversed graph of the directed graph G. It is the graph ## obtained from G by reversing the edges. ## DeclareGlobalFunction( "ReversedGraph" ); ############################################################################ ## #F AutoConnectedComponents(G) ## ## We say that a digraph is connected when for every pair of vertices there ## is a path consisting of directed or reversed edges from one vertex to ## the other. ## ## Computes a list of the connected components of the digraph ## DeclareGlobalFunction( "AutoConnectedComponents" ); ############################################################################# ## #F GraphStronglyConnectedComponents(G) ## ## Produces the strongly connected components of the digraph G ## DeclareGlobalFunction( "GraphStronglyConnectedComponents" ); ############################################################################# ## #F UnderlyingMultiGraphOfAutomaton(A) ## ## "A" is an automaton. The output is the underlying directed multi-graph. ## DeclareGlobalFunction( "UnderlyingMultiGraphOfAutomaton" ); ############################################################################# ## #F UnderlyingGraphOfAutomaton(A) ## ## "A" is an automaton. The output is the underlying directed graph. ## DeclareGlobalFunction( "UnderlyingGraphOfAutomaton" ); ############################################################################# ## #F DiGraphToRelation(D) ## ## returns the relation corresponding to the digraph ## DeclareGlobalFunction( "DiGraphToRelation" ); ############################################################################# ## #F MSccAutomaton(A) ## ## Produces an automaton where, in each strongly connected component, ## edges labeled by inverses are added. ## ## This construction is useful in Finite Semigroup Theory ## DeclareGlobalFunction( "MSccAutomaton" ); ############################################################################# ## #F AutoIsAcyclicGraph(G) ## ## The argument is a graph's list of adjacencies ## and this function returns true if the argument ## is an acyclic graph and false otherwise. ## DeclareGlobalFunction( "AutoIsAcyclicGraph" ); #E