Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

133913 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section6.4Exercises

1

Suppose that $G$ is a finite group with an element $g$ of order 5 and an element $h$ of order 7. Why must $|G| \geq 35\text{?}$

Hint

The order of $g$ and the order $h$ must both divide the order of $G\text{.}$

2

Suppose that $G$ is a finite group with 60 elements. What are the orders of possible subgroups of $G\text{?}$

Hint

The possible orders must divide 60.

3

Prove or disprove: Every subgroup of the integers has finite index.

Hint

This is true for every proper nontrivial subgroup.

4

Prove or disprove: Every subgroup of the integers has finite order.

Hint

False.

5

List the left and right cosets of the subgroups in each of the following.

  1. $\langle 8 \rangle$ in ${\mathbb Z}_{24}$

  2. $\langle 3 \rangle$ in $U(8)$

  3. $3 {\mathbb Z}$ in ${\mathbb Z}$

  4. $A_4$ in $S_4$

  5. $A_n$ in $S_n$

  6. $D_4$ in $S_4$

  7. ${\mathbb T}$ in ${\mathbb C}^\ast$

  8. $H = \{ (1), (123), (132) \}$ in $S_4$

Hint

(a) $\langle 8 \rangle\text{,}$ $1 + \langle 8 \rangle\text{,}$ $2 + \langle 8 \rangle\text{,}$ $3 + \langle 8 \rangle\text{,}$ $4 + \langle 8 \rangle\text{,}$ $5 + \langle 8 \rangle\text{,}$ $6 + \langle 8 \rangle\text{,}$ and $7 + \langle 8 \rangle\text{;}$ (c) $3 {\mathbb Z}\text{,}$ $1 + 3 {\mathbb Z}\text{,}$ and $2 + 3 {\mathbb Z}\text{.}$

6

Describe the left cosets of $SL_2( {\mathbb R} )$ in $GL_2( {\mathbb R})\text{.}$ What is the index of $SL_2( {\mathbb R} )$ in $GL_2( {\mathbb R})\text{?}$

7

Verify Euler's Theorem for $n = 15$ and $a = 4\text{.}$

Hint

$4^{\phi(15)} \equiv 4^8 \equiv 1 \pmod{15}\text{.}$

8

Use Fermat's Little Theorem to show that if $p= 4n+3$ is prime, there is no solution to the equation $x^2 \equiv -1 \pmod{p}\text{.}$

9

Show that the integers have infinite index in the additive group of rational numbers.

10

Show that the additive group of real numbers has infinite index in the additive group of the complex numbers.

11

Let $H$ be a subgroup of a group $G$ and suppose that $g_1, g_2 \in G\text{.}$ Prove that the following conditions are equivalent.

  1. $g_1 H = g_2 H$

  2. $H g_1^{-1} = H g_2^{-1}$

  3. $g_1 H \subset g_2 H$

  4. $g_2 \in g_1 H$

  5. $g_1^{-1} g_2 \in H$

12

If $ghg^{-1} \in H$ for all $g \in G$ and $h \in H\text{,}$ show that right cosets are identical to left cosets. That is, show that $gH = Hg$ for all $g \in G\text{.}$

Hint

Let $g_1 \in gH\text{.}$ Show that $g_1 \in Hg$ and thus $gH \subset Hg\text{.}$

13

What fails in the proof of Theorem 6.8 if $\phi : {\mathcal L}_H \rightarrow {\mathcal R}_H$ is defined by $\phi( gH ) = Hg\text{?}$

14

Suppose that $g^n = e\text{.}$ Show that the order of $g$ divides $n\text{.}$

15

Show that any two permutations $\alpha, \beta \in S_n$ have the same cycle structure if and only if there exists a permutation $\gamma$ such that $\beta = \gamma \alpha \gamma^{-1}\text{.}$ If $\beta = \gamma \alpha \gamma^{-1}$ for some $\gamma \in S_n\text{,}$ then $\alpha$ and $\beta$ are .

16

If $|G| = 2n\text{,}$ prove that the number of elements of order 2 is odd. Use this result to show that $G$ must contain a subgroup of order 2.

17

Suppose that $[G : H] = 2\text{.}$ If $a$ and $b$ are not in $H\text{,}$ show that $ab \in H\text{.}$

18

If $[G : H] = 2\text{,}$ prove that $gH = Hg\text{.}$

19

Let $H$ and $K$ be subgroups of a group $G\text{.}$ Prove that $gH \cap gK$ is a coset of $H \cap K$ in $G\text{.}$

Hint

Show that $g(H \cap K) = gH \cap gK\text{.}$

20

Let $H$ and $K$ be subgroups of a group $G\text{.}$ Define a relation $\sim$ on $G$ by $a \sim b$ if there exists an $h \in H$ and a $k \in K$ such that $hak = b\text{.}$ Show that this relation is an equivalence relation. The corresponding equivalence classes are called . Compute the double cosets of $H = \{ (1),(123), (132) \}$ in $A_4\text{.}$

21

Let $G$ be a cyclic group of order $n\text{.}$ Show that there are exactly $\phi(n)$ generators for $G\text{.}$

22

Let $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}\text{,}$ where $p_1, p_2, \ldots, p_k$ are distinct primes. Prove that

\begin{equation*} \phi(n) = n \left( 1 - \frac{1}{p_1} \right) \left( 1 - \frac{1}{p_2} \right)\cdots \left( 1 - \frac{1}{p_k} \right). \end{equation*}
Hint

If $\gcd(m,n) = 1\text{,}$ then $\phi(mn) = \phi(m)\phi(n)$ (Exercise 2.3.26 in Chapter 2).

23

Show that

\begin{equation*} n = \sum_{d \mid n} \phi(d) \end{equation*}

for all positive integers $n\text{.}$