1
Show that each of the following numbers is algebraic over ${\mathbb Q}$ by finding the minimal polynomial of the number over ${\mathbb Q}\text{.}$
$\sqrt{ 1/3 + \sqrt{7} }$
$\sqrt{ 3} + \sqrt[3]{5}$
$\sqrt{3} + \sqrt{2}\, i$
$\cos \theta + i \sin \theta$ for $\theta = 2 \pi /n$ with $n \in {\mathbb N}$
$\sqrt{ \sqrt[3]{2} - i }$
(a) $x^4 - (2/3) x^2 - 62/9\text{;}$ (c) $x^4 - 2 x^2 + 25\text{.}$