$\begin{array}{lcl} \Gamma_{ \phantom{\, t } \, t \, r }^{ \, t \phantom{\, t } \phantom{\, r } } & = & \frac{a^{4} m + a^{2} q^{2} r + q^{2} r^{3} - m r^{4} - {\left(a^{4} m + a^{2} m r^{2}\right)} \sin\left({\theta}\right)^{2}}{2 \, m r^{5} - r^{6} - {\left(a^{2} + q^{2}\right)} r^{4} - {\left(a^{6} + a^{4} q^{2} - 2 \, a^{4} m r + a^{4} r^{2}\right)} \cos\left({\theta}\right)^{4} + 2 \, {\left(2 \, a^{2} m r^{3} - a^{2} r^{4} - {\left(a^{4} + a^{2} q^{2}\right)} r^{2}\right)} \cos\left({\theta}\right)^{2}} \\ \Gamma_{ \phantom{\, t } \, t \, {\theta} }^{ \, t \phantom{\, t } \phantom{\, {\theta} } } & = & \frac{{\left(a^{2} q^{2} - 2 \, a^{2} m r\right)} \cos\left({\theta}\right) \sin\left({\theta}\right)}{a^{4} \cos\left({\theta}\right)^{4} + 2 \, a^{2} r^{2} \cos\left({\theta}\right)^{2} + r^{4}} \\ \Gamma_{ \phantom{\, t } \, r \, {\phi} }^{ \, t \phantom{\, r } \phantom{\, {\phi} } } & = & \frac{{\left(a^{5} m + a^{3} q^{2} r - a^{3} m r^{2}\right)} \sin\left({\theta}\right)^{4} - {\left(a^{5} m + 2 \, a^{3} q^{2} r - 2 \, a^{3} m r^{2} + 2 \, a q^{2} r^{3} - 3 \, a m r^{4}\right)} \sin\left({\theta}\right)^{2}}{2 \, m r^{5} - r^{6} - {\left(a^{2} + q^{2}\right)} r^{4} - {\left(a^{6} + a^{4} q^{2} - 2 \, a^{4} m r + a^{4} r^{2}\right)} \cos\left({\theta}\right)^{4} + 2 \, {\left(2 \, a^{2} m r^{3} - a^{2} r^{4} - {\left(a^{4} + a^{2} q^{2}\right)} r^{2}\right)} \cos\left({\theta}\right)^{2}} \\ \Gamma_{ \phantom{\, t } \, {\theta} \, {\phi} }^{ \, t \phantom{\, {\theta} } \phantom{\, {\phi} } } & = & \frac{{\left(a^{5} q^{2} - 2 \, a^{5} m r\right)} \cos\left({\theta}\right) \sin\left({\theta}\right)^{5} - {\left(a^{5} q^{2} - 2 \, a^{5} m r + a^{3} q^{2} r^{2} - 2 \, a^{3} m r^{3}\right)} \cos\left({\theta}\right) \sin\left({\theta}\right)^{3}}{a^{6} \cos\left({\theta}\right)^{6} + 3 \, a^{4} r^{2} \cos\left({\theta}\right)^{4} + 3 \, a^{2} r^{4} \cos\left({\theta}\right)^{2} + r^{6}} \\ \Gamma_{ \phantom{\, r } \, t \, t }^{ \, r \phantom{\, t } \phantom{\, t } } & = & \frac{m r^{4} - {\left(2 \, m^{2} + q^{2}\right)} r^{3} + {\left(a^{2} m + 3 \, m q^{2}\right)} r^{2} - {\left(a^{4} m + a^{2} m q^{2} - 2 \, a^{2} m^{2} r + a^{2} m r^{2}\right)} \cos\left({\theta}\right)^{2} - {\left(a^{2} q^{2} + q^{4}\right)} r}{a^{6} \cos\left({\theta}\right)^{6} + 3 \, a^{4} r^{2} \cos\left({\theta}\right)^{4} + 3 \, a^{2} r^{4} \cos\left({\theta}\right)^{2} + r^{6}} \\ \Gamma_{ \phantom{\, r } \, t \, {\phi} }^{ \, r \phantom{\, t } \phantom{\, {\phi} } } & = & -\frac{{\left(a m r^{4} - {\left(2 \, a m^{2} + a q^{2}\right)} r^{3} + {\left(a^{3} m + 3 \, a m q^{2}\right)} r^{2} - {\left(a^{5} m + a^{3} m q^{2} - 2 \, a^{3} m^{2} r + a^{3} m r^{2}\right)} \cos\left({\theta}\right)^{2} - {\left(a^{3} q^{2} + a q^{4}\right)} r\right)} \sin\left({\theta}\right)^{2}}{a^{6} \cos\left({\theta}\right)^{6} + 3 \, a^{4} r^{2} \cos\left({\theta}\right)^{4} + 3 \, a^{2} r^{4} \cos\left({\theta}\right)^{2} + r^{6}} \\ \Gamma_{ \phantom{\, r } \, r \, r }^{ \, r \phantom{\, r } \phantom{\, r } } & = & -\frac{a^{2} m + q^{2} r - m r^{2} - {\left(a^{2} m - a^{2} r\right)} \sin\left({\theta}\right)^{2}}{2 \, m r^{3} - r^{4} - {\left(a^{2} + q^{2}\right)} r^{2} - {\left(a^{4} + a^{2} q^{2} - 2 \, a^{2} m r + a^{2} r^{2}\right)} \cos\left({\theta}\right)^{2}} \\ \Gamma_{ \phantom{\, r } \, r \, {\theta} }^{ \, r \phantom{\, r } \phantom{\, {\theta} } } & = & -\frac{a^{2} \cos\left({\theta}\right) \sin\left({\theta}\right)}{a^{2} \cos\left({\theta}\right)^{2} + r^{2}} \\ \Gamma_{ \phantom{\, r } \, {\theta} \, {\theta} }^{ \, r \phantom{\, {\theta} } \phantom{\, {\theta} } } & = & \frac{2 \, m r^{2} - r^{3} - {\left(a^{2} + q^{2}\right)} r}{a^{2} \cos\left({\theta}\right)^{2} + r^{2}} \\ \Gamma_{ \phantom{\, r } \, {\phi} \, {\phi} }^{ \, r \phantom{\, {\phi} } \phantom{\, {\phi} } } & = & \frac{{\left(a^{2} m r^{4} - {\left(2 \, a^{2} m^{2} + a^{2} q^{2}\right)} r^{3} + {\left(a^{4} m + 3 \, a^{2} m q^{2}\right)} r^{2} - {\left(a^{6} m + a^{4} m q^{2} - 2 \, a^{4} m^{2} r + a^{4} m r^{2}\right)} \cos\left({\theta}\right)^{2} - {\left(a^{4} q^{2} + a^{2} q^{4}\right)} r\right)} \sin\left({\theta}\right)^{4} + {\left(2 \, m r^{6} - r^{7} - {\left(a^{2} + q^{2}\right)} r^{5} + {\left(2 \, a^{4} m r^{2} - a^{4} r^{3} - {\left(a^{6} + a^{4} q^{2}\right)} r\right)} \cos\left({\theta}\right)^{4} + 2 \, {\left(2 \, a^{2} m r^{4} - a^{2} r^{5} - {\left(a^{4} + a^{2} q^{2}\right)} r^{3}\right)} \cos\left({\theta}\right)^{2}\right)} \sin\left({\theta}\right)^{2}}{a^{6} \cos\left({\theta}\right)^{6} + 3 \, a^{4} r^{2} \cos\left({\theta}\right)^{4} + 3 \, a^{2} r^{4} \cos\left({\theta}\right)^{2} + r^{6}} \\ \Gamma_{ \phantom{\, {\theta} } \, t \, t }^{ \, {\theta} \phantom{\, t } \phantom{\, t } } & = & \frac{{\left(a^{2} q^{2} - 2 \, a^{2} m r\right)} \cos\left({\theta}\right) \sin\left({\theta}\right)}{a^{6} \cos\left({\theta}\right)^{6} + 3 \, a^{4} r^{2} \cos\left({\theta}\right)^{4} + 3 \, a^{2} r^{4} \cos\left({\theta}\right)^{2} + r^{6}} \\ \Gamma_{ \phantom{\, {\theta} } \, t \, {\phi} }^{ \, {\theta} \phantom{\, t } \phantom{\, {\phi} } } & = & -\frac{{\left(a^{3} q^{2} - 2 \, a^{3} m r + a q^{2} r^{2} - 2 \, a m r^{3}\right)} \cos\left({\theta}\right) \sin\left({\theta}\right)}{a^{6} \cos\left({\theta}\right)^{6} + 3 \, a^{4} r^{2} \cos\left({\theta}\right)^{4} + 3 \, a^{2} r^{4} \cos\left({\theta}\right)^{2} + r^{6}} \\ \Gamma_{ \phantom{\, {\theta} } \, r \, r }^{ \, {\theta} \phantom{\, r } \phantom{\, r } } & = & -\frac{a^{2} \cos\left({\theta}\right) \sin\left({\theta}\right)}{2 \, m r^{3} - r^{4} - {\left(a^{2} + q^{2}\right)} r^{2} - {\left(a^{4} + a^{2} q^{2} - 2 \, a^{2} m r + a^{2} r^{2}\right)} \cos\left({\theta}\right)^{2}} \\ \Gamma_{ \phantom{\, {\theta} } \, r \, {\theta} }^{ \, {\theta} \phantom{\, r } \phantom{\, {\theta} } } & = & \frac{r}{a^{2} \cos\left({\theta}\right)^{2} + r^{2}} \\ \Gamma_{ \phantom{\, {\theta} } \, {\theta} \, {\theta} }^{ \, {\theta} \phantom{\, {\theta} } \phantom{\, {\theta} } } & = & -\frac{a^{2} \cos\left({\theta}\right) \sin\left({\theta}\right)}{a^{2} \cos\left({\theta}\right)^{2} + r^{2}} \\ \Gamma_{ \phantom{\, {\theta} } \, {\phi} \, {\phi} }^{ \, {\theta} \phantom{\, {\phi} } \phantom{\, {\phi} } } & = & -\frac{{\left({\left(a^{6} + a^{4} q^{2} - 2 \, a^{4} m r + a^{4} r^{2}\right)} \cos\left({\theta}\right)^{5} - 2 \, {\left(2 \, a^{2} m r^{3} - a^{2} r^{4} - {\left(a^{4} + a^{2} q^{2}\right)} r^{2}\right)} \cos\left({\theta}\right)^{3} - {\left(a^{4} q^{2} - 2 \, a^{4} m r + 2 \, a^{2} q^{2} r^{2} - 4 \, a^{2} m r^{3} - a^{2} r^{4} - r^{6}\right)} \cos\left({\theta}\right)\right)} \sin\left({\theta}\right)}{a^{6} \cos\left({\theta}\right)^{6} + 3 \, a^{4} r^{2} \cos\left({\theta}\right)^{4} + 3 \, a^{2} r^{4} \cos\left({\theta}\right)^{2} + r^{6}} \\ \Gamma_{ \phantom{\, {\phi} } \, t \, r }^{ \, {\phi} \phantom{\, t } \phantom{\, r } } & = & \frac{a^{3} m \cos\left({\theta}\right)^{2} + a q^{2} r - a m r^{2}}{2 \, m r^{5} - r^{6} - {\left(a^{2} + q^{2}\right)} r^{4} - {\left(a^{6} + a^{4} q^{2} - 2 \, a^{4} m r + a^{4} r^{2}\right)} \cos\left({\theta}\right)^{4} + 2 \, {\left(2 \, a^{2} m r^{3} - a^{2} r^{4} - {\left(a^{4} + a^{2} q^{2}\right)} r^{2}\right)} \cos\left({\theta}\right)^{2}} \\ \Gamma_{ \phantom{\, {\phi} } \, t \, {\theta} }^{ \, {\phi} \phantom{\, t } \phantom{\, {\theta} } } & = & \frac{{\left(a q^{2} - 2 \, a m r\right)} \cos\left({\theta}\right)}{{\left(a^{4} \cos\left({\theta}\right)^{4} + 2 \, a^{2} r^{2} \cos\left({\theta}\right)^{2} + r^{4}\right)} \sin\left({\theta}\right)} \\ \Gamma_{ \phantom{\, {\phi} } \, r \, {\phi} }^{ \, {\phi} \phantom{\, r } \phantom{\, {\phi} } } & = & -\frac{a^{2} q^{2} r - a^{2} m r^{2} + q^{2} r^{3} - 2 \, m r^{4} + r^{5} - {\left(a^{4} m - a^{4} r\right)} \cos\left({\theta}\right)^{4} + {\left(a^{4} m - a^{2} m r^{2} + 2 \, a^{2} r^{3}\right)} \cos\left({\theta}\right)^{2}}{2 \, m r^{5} - r^{6} - {\left(a^{2} + q^{2}\right)} r^{4} - {\left(a^{6} + a^{4} q^{2} - 2 \, a^{4} m r + a^{4} r^{2}\right)} \cos\left({\theta}\right)^{4} + 2 \, {\left(2 \, a^{2} m r^{3} - a^{2} r^{4} - {\left(a^{4} + a^{2} q^{2}\right)} r^{2}\right)} \cos\left({\theta}\right)^{2}} \\ \Gamma_{ \phantom{\, {\phi} } \, {\theta} \, {\phi} }^{ \, {\phi} \phantom{\, {\theta} } \phantom{\, {\phi} } } & = & \frac{a^{4} \cos\left({\theta}\right)^{5} + {\left(a^{2} q^{2} - 2 \, a^{2} m r + 2 \, a^{2} r^{2}\right)} \cos\left({\theta}\right)^{3} - {\left(a^{2} q^{2} - 2 \, a^{2} m r - r^{4}\right)} \cos\left({\theta}\right)}{{\left(a^{4} \cos\left({\theta}\right)^{4} + 2 \, a^{2} r^{2} \cos\left({\theta}\right)^{2} + r^{4}\right)} \sin\left({\theta}\right)} \end{array}$