Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
Sage Reference Manual
Project: SageManifolds
Views: 717109Search.setIndex({envversion:42,terms:{represent:[9,8],all:[2,3,4,5,6,7,8,10,11],code:[5,2,8],sci:8,edg:8,jdq062:8,illustr:8,global:6,gamma0_constructor:10,interchang:8,four:8,ellipt:[3,6,7,8,9,10,5],arithmeticsubgroup_with_categori:3,congroup_gamma0:[4,10],edu:8,follow:[2,3,11,8,9,5],row:4,cython:[],typeerror:11,depend:[9,8],fareysymbol:[9,3],graph:8,elsewher:2,intermedi:[8,3],permutation_act:8,program:8,those:[4,10,8],under:[4,6,7,3],sens:[8,3],adapt:8,sourc:8,everi:3,string:[9,5,10,7,3],fals:[3,4,5,6,7,8,9,10,11],image_mod_n:[6,7,11],springer:3,congroup_gammah:[10,7,5],volum:8,fall:3,veri:[8,3],ticket:5,gamma1_constructor:5,riemann:3,level:[2,3,5,7,8,9,10,11],schoof:3,list:[2,3,7,8,9,10,11],iter:8,degeneraci:2,arithmeticerror:7,matric:[9,8,2,7,11],alia:3,small:[4,3],refer:[9,8,3],pleas:3,upper:0,quicker:8,slower:3,natur:3,congroup_gamma1:5,ngen:3,random_el:[4,8],sign:[9,5,10,11],consequ:2,zero:9,blanklin:[2,7,5],design:8,pass:4,further:3,arithmeticsubgroup_permutation_class:8,odd:[9,8,10,3],linear:0,even:[9,8,11,7,3],index:[],what:3,appear:4,neg:[8,3],section:3,biject:2,favour:[4,2],current:[8,3],experiment:3,intersect:7,"new":[5,7,8],symmetr:8,method:[3,4,5,8,9,11],full:[3,4,5,6,8,10,11],monien:9,is_finit:3,whose:[4,9,7,11],gener:[2,3,4,5,6,7,8,9,10,11],coeffici:3,sophist:2,here:[2,3],satisfi:8,modular:[],coerc:11,modif:[11,8,3],coincid:8,vertic:8,modifi:3,sinc:[3,4,6,8,10,11],valu:[0,4,8,3],box:3,search:1,produc:8,divisor:[10,11,2,7,3],arithmeticsubgroup_permut:[9,8,11],degeneracy_coset_representatives_gamma0:2,genu:[9,5,8,7,3],step:[2,8],precis:[5,10,7,3],galoi:8,def:9,xrang:[8,3],action:[0,2,3,4,6,8],extrem:3,implement:[2,3,7,8,9,5],coercibl:11,isomorph:8,via:[9,5,2,3],dashdot:9,extra:[4,8],primit:9,modul:[9,1,8,3],cyclotomicfield:5,"while":[9,3],deprec:2,"boolean":[9,8,3],kurth:[9,8],gamma0_coset_rep:7,univ:8,pairing_matric:9,unit:7,plot:9,from:[2,3,4,5,6,7,8,9,10,11],describ:[1,5,8],would:9,prove:3,doubl:[5,8],two:[2,3,7,8,9,5],next:8,few:[2,3],quer:[7,5],call:[3,5,7,8,9,11],taken:8,type:[0,3,5,6,7,8,9,10,11],tell:3,minor:8,more:[2,3,11,7,10,5],sort:3,diamond:3,conductor:5,henc:[2,8],wohlfart:[8,3],finit:[],an_el:3,flag:[9,8],appendix:3,todd_coxeter_l_s2:8,far:[10,5,2,7,3],particular:8,known:[5,3],kulkarni:[9,8],reduce_to_cusp:9,hold:8,"_list_of_elements_in_h":7,cach:[9,5,7,3],must:[8,11,7,3],alexei:8,none:[9,5,8,7,3],graphic:9,word:[9,7,8],color_even:9,generalis:[8,3],work:[11,8,3],det:0,uniqu:[2,3,4,6,8,9],modular_abelian_varieti:11,remain:0,itself:[4,8],obvious:11,can:[9,8,11,7,3],purpos:3,is_odd:[8,3],oddarithmeticsubgroup_permut:8,enfant:8,overrid:11,tietz:9,gamma1:[0,2,3,4,5,7,8,9,10,11],gamma0:[0,2,3,4,5,6,7,8,9,10,11],process:3,hl14:8,accept:11,drawer:8,want:[8,3],cambridg:8,occur:8,verril:[8,3],oesterl:5,wohlfarht:8,alwai:[0,3,4,6,7,10,5],surfac:8,cours:3,multipl:[8,7,3],divid:[10,7],rather:[8,7,3],as_permutation_group:[8,3],get:[9,8],divis:10,how:8,criterion:8,pure:8,congruencesubgroup:[11,6,7,3],instead:11,simpl:8,chri:[9,8],is_subgroup:[3,4,7,8,10,5],map:[0,8,2,7,3],product:[9,8],likewis:2,overridden:3,algebra:[8,3],congroup_gener:[11,6,7,3],after:8,befor:11,membership:[9,3],mai:[8,11,7,3],associ:[8,3],gammah:[2,3,5,7,9,10,11],dimension_ei:[5,3],attempt:11,practic:8,johnson:4,hackensack:8,dot:9,author:[3,4,5,7,8,9,11],is_even:[5,8,10,7,3],correspond:[0,3,5,8,9,11],fine:3,element:[],lightgrai:9,inform:[5,10,7,3],curent:8,combin:8,allow:11,anoth:[5,3],coset_graph:8,order:[3,6,7,8,9,10,5],origin:3,cuspidal_subspac:[10,5],deform:3,over:[3,6,7,8,10,11],minmal:9,nregcusp:[8,7,3],helena:8,paper:3,london:8,generalised_level:[8,3],still:[0,4,8,3],todd_coxet:[8,3],paramet:9,style:9,group:[],treat:3,chosen:4,invalid:[8,11],fix:[9,8,5,3],is_congru:[11,8,3],lect:8,whether:[11,8,3],complex:0,pairing_matrices_to_tietze_index:9,cusp:[0,3,4,6,7,8,9,10,5],non:[8,3],good:8,"return":[0,2,3,4,5,6,7,8,9,10,11],greater:[9,3],thei:[4,8,3],handl:[9,3],safe:8,answer:4,hamilton:8,half:3,canonical_label:8,now:2,nor:8,gamma_class:6,choic:8,term:[8,7,3],name:[2,8],trac:[4,5],anyth:2,to_even_subgroup:[8,11,7,3],tran:[6,3],arithgroup_perm:[9,8,3],separ:3,easili:8,roch:3,each:[9,2,8],found:2,side:9,valuat:3,mumu:7,domain:[9,8],inplac:8,weight:[5,11,10,7,3],odd_subgroup:8,replac:11,gaussian:0,procedur:8,realli:11,todd_coxeter_s2_s3:8,coprim:[4,6,3],eisenstein:[5,3],todd:[2,3,7,8,10,5],hyperbol:[9,8],differ:[5,8],conjugaci:8,out:3,variabl:0,perm_group:8,matrix:[0,2,3,5,6,7,8,9,10,11],space:[2,3,11,7,10,5],symmetricgroup:[9,8,11],rep:[8,10,3],research:8,optim:2,suitabl:3,rel:3,print:8,formula:[5,10,3],factori:11,math:[9,8,3],divisor_subgroup:[10,7],initial_step:8,insid:2,motzkin:8,strate:8,nirregcusp:[8,6,7,3],infin:[0,3,4,6,7,9],free:[9,8],standard:[2,3,8,9,10,11],standalon:3,base:[0,2,3,4,5,6,7,8,9,10,11],theori:3,put:8,eval_sl2z_word:8,surgroup:8,prime_rang:[10,5],arithgroup_el:0,dirichlet:[5,3],dedekind:9,traceback:[5,8,11,7,3],wrong:8,advanc:8,david:[5,8,7,11],recov:9,american:8,heck:3,due:[5,8],onto:3,first:[8,3],oper:3,dimens:[5,11,10,7,3],gamma_h_subgroup:[10,7],congruencesubgroupfromgroup:11,directli:[11,3],ksv11:8,carri:3,question:5,congruence_closur:8,number:[0,2,3,6,7,8,9,10,5],sometim:7,restrict:7,smaller:2,done:[8,3],construct:8,sturm:3,ring:[3,6,7,8,10,11],size:[11,3],given:[2,3,5,6,7,8,9,10,11],ian:8,hsuexample10:[9,8],convent:[9,8,3],start:[4,8],data:[11,8,3],congroup_gamma:6,least:[8,7,3],numberfield:[0,5],necessarili:8,whith:8,white:9,store:8,option:[9,8],copi:8,lower:0,specifi:[5,7,11],part:[9,8],noncongru:8,dirichletgroup:5,exactli:[7,3],than:[3,4,7,8,9,10],datatyp:11,keyword:4,cyclic:8,provid:[8,3],tree:2,structur:0,charact:[5,3],project:8,is_gamma:6,multiplicativegroupel:0,posit:[4,8,2,7,3],other:[9,10,7,8],seri:[5,3],randomli:4,lowest:7,comput:[2,3,5,7,8,10,11],explicit:3,cohen:5,nonabelian:3,argument:[4,8,3],dash:9,packag:[9,8],have:8,reserv:8,need:[8,3],notimplementederror:[5,11,3],dimension_cusp_form:[5,8,10,7,3],kevin:3,reduce_cusp:[4,6,7,3],techniqu:8,equival:[2,3,4,6,7,8],dictionnari:8,self:[0,3,4,5,6,7,8,9,10,11],note:[0,11,2,8,3],also:[9,8,3],denomin:7,take:[8,7,3],which:[0,3,5,7,8,9,10,11],new_subspac:[10,5],thoma:8,noth:3,infinit:3,sure:[11,3],distribut:4,s3_label:8,normal:[8,3],multipli:[4,2],is_abelian:3,l_edg:8,object:[9,10,11],reach:8,most:[3,4,5,7,8,11],regular:[8,7,3],pair:[4,9,8],alpha:9,"class":[0,3,4,5,6,7,8,9,10,11],doi:8,give:[2,8],sl2z_class:4,cover:0,doe:[0,8,3],inde:3,exp:8,dimension_new_cusp_form:[10,7,5],built:8,swinnerton:8,doctest:[10,5,2,7,6],ncusp:[3,6,7,8,10,5],show:[0,9,7,8],iastat:8,random:[4,2,8],sage:[0,2,3,4,5,6,7,8,9,10,11],r_edg:8,linestyl:9,tend:[10,7,5],trivial:[8,6,3],find:[4,8,7,3],is_sl2z:4,involv:0,absolut:4,onli:[2,3,4,6,7,8,9],slow:3,r_label:8,solut:9,written:9,should:[4,9,11,2,3],version:8,black:3,central:8,abelian:[11,3],cusp_class:9,cube:7,congruenc:[],variou:[7,3],go09:8,convert:8,express:8,stop:8,becaus:4,congruent:[10,3],"import":[2,3,4,5,6,7,8,9,10,11],congroup_sl2z:4,hartmut:9,gen:[9,8,10,3],requir:3,prime:[10,7,5],l_label:8,arxiv:8,"_contains_sl2":[11,3],"public":8,twice:[8,3],lsu:8,common:[8,3],contain:[2,3,5,7,8,10,11],through:[4,8],vincent:8,where:[2,3,5,7,8,9,10,11],absurdli:3,view:[2,8],loeffler:[5,8,7,11],moduli:8,set:[2,3,7,8,9,10,5],modulo:[3,11,6,7,8,5],dump:[9,6,5],lnm:3,similarli:8,see:[3,5,7,8,9,10,11],result:[0,9,5,7,3],arg:[4,11,6,3],fail:3,close:8,s1461157013000338:8,deriv:11,coxet:[2,3,7,8,10,5],flexibl:11,kei:[8,3],correctli:[9,3],wohlfahrt:8,boundari:3,enumer:[5,8,10,7,3],label:8,enough:[4,3],smallest:[8,11,7,3],between:[2,8],sl2z:[3,4,5,7,8,9,10,11],awai:4,gorinov:8,altern:3,neither:8,parent:3,numer:7,sole:3,nu2:[3,7,8,9,10,5],nu3:[3,6,7,8,9,10,5],extens:[8,11],matthia:8,len:[8,2,7,3],complementari:3,solv:9,amer:9,addit:4,both:[7,3],last:[5,8,11,7,3],irregular:[8,6,7,3],cycl:8,relabel:8,equal:[3,4,7,8,9,11],nile:4,instanc:0,caylei:8,improv:8,gammah_constructor:7,whole:[5,8],load:[9,6,5],kwd:[4,11,6,3],gprime:9,point:[2,3,6,7,8,9,10,5],instanti:11,overview:8,generators_help:2,walk:8,permut:[],ravi:[9,8],suppli:5,respect:[9,2,8],assum:3,quit:3,becom:8,java:8,gamma_h:[10,7],coupl:8,invers:[9,5,2,8],empti:8,dessin:8,agash:3,much:[11,8,3],kime:[8,3],interest:8,basic:1,matrixgroup:11,valueerror:[7,8],quickli:3,field:[10,11],org:8,presenc:0,imag:[8,11,6,7,3],remark:3,ani:[3,7,8,9,10,11],assert:[7,8],lift:8,sl2z_word_problem:8,els:8,matrix_integer_dens:0,repetit:3,"_s3":8,present:8,"case":[0,11,5,3],multi:8,ident:8,solid:9,trick:5,defin:[],calcul:[3,6,7,9,10,5],zorder:9,abov:[9,11,10,3],error:[8,11],gamma_0:[10,11],right_coset:8,seven:8,degeneracy_coset_representatives_gamma1:2,helper:[],vol:8,set_verbos:8,canon:[8,3],them:[4,8,3],zmod:11,archiv:8,arithmeticsubgroupel:[0,3],difffer:3,quadrat:3,is_gammah:7,complexfield:0,let:[2,8],clearli:3,minim:[10,5,6,7,3],gamma0_class:[4,10],make:[11,3],belong:8,is_congruencesubgroup:11,fewer:4,same:[9,8,2,5,3],proce:11,renumb:8,document:8,complet:[8,3],cusp_data:3,is_gamma1:5,is_gamma0:10,http:8,again:4,s2_label:8,forgotten:9,publ:8,on_right:3,rais:[11,8,3],user:9,wayback:8,studi:[9,8],recent:[5,8,11,7,3],exceedingli:3,framework:3,entri:[0,4,9,8],thu:3,word_of_perm:8,without:9,pickl:9,exampl:[0,2,3,4,5,6,7,8,9,10,11],command:9,congruencesubgroup_constructor:11,thi:[1,2,3,5,6,7,8,9,10,11],choos:[8,3],everyth:2,left:[0,2,3,4,8,9],identifi:8,just:[5,6,8],less:[4,8],obtain:[9,10,2,7,8],refactor:5,coset_rep:[2,3,7,8,9,10],atsd71:8,shurman:3,speed:[9,8],arithgroup:[0,2,3,4,5,6,7,8,9,10,11],fundamental_domain:9,farei:[],modularsymbol:[10,5],preprint:8,gamma1_class:5,thick:9,except:2,stabilis:[8,7,3],color:9,add:2,book:5,theorem:[8,3],input:[2,3,5,7,8,9,10,11],semigroup:8,expon:8,transit:8,stein:[5,11,3],format:[9,8],arithgroup_gener:[11,8,3],regard:4,inequival:3,know:[8,3],press:8,world:8,height:9,evenarithmeticsubgroup_permut:8,mod:[10,11],ignor:9,hsuexample18:[8,3],arbitrari:8,html:8,integ:[0,2,3,4,5,6,7,8,9,10,11],princip:[6,8],either:[3,7,8,9,10,5],output:[9,8,2,7,3],kulo:8,page:1,underli:8,www:8,right:[0,2,3,4,7,8,9,10,5],old:3,compat:8,some:[5,8,11,7,3],back:8,kul91:8,gammah_class:[10,7,5],understood:8,intern:2,s3_edg:8,paired_sid:9,loop:8,jlm:8,indirect:[10,5,2,7,6],librari:2,show_pair:9,nonzero:[9,7],projective_index:[5,7,3],sturm_bound:3,definit:11,subclass:[11,3],mathemat:8,larg:[8,3],base_r:[5,11],prod:9,proc:8,is_arithmeticsubgroup:3,schuett:[8,3],nontrivi:5,run:[5,8,6,11],power:[8,3],delecroix:8,journal:8,ration:[0,9,10,11],subspac:[5,10,7,3],modsym:3,is_norm:[8,3],symp:8,hlist:7,hsu:[9,8],"throw":4,simpler:[5,10,7,3],chapter:1,william:[5,11,3],about:3,actual:3,dimension_modular_form:[5,3],testsuit:[5,8,6,11],s2_edg:8,unfortun:4,"__contains__":9,degre:3,kurthc:8,act:[0,8,2,3],"2x2":[0,2],disabl:8,gamma:[3,6,7,8,9,11],routin:[2,3],soc:8,effici:8,tessel:9,digraph:8,"float":9,bound:[4,2,3],automat:3,buzzard:3,oddarithmeticsubgroup_permutation_with_categori:8,disguis:8,your:8,inclus:8,fill:9,ymax:9,wai:[5,8],aren:3,combinator:8,transform:[0,9],"long":[2,8],custom:9,verbos:8,width:[9,8,3],includ:3,fraction:[0,9,8],"var":0,strictli:[4,3],hsu96:8,hsu97:8,are_equival:[6,3],"function":[],word_problem:9,atkin:8,form:[2,3,6,7,8,9,10,5],forc:3,tupl:[9,8,3],three:[9,8],maxim:9,translat:9,newer:2,larger:[4,5,10,7,8],ling:8,don:8,line:[9,3],"true":[3,4,5,6,7,8,9,10,11],bug:3,conclus:3,extend:7,tripl:3,coset:[],consist:[9,8,2,7,11],possibl:[4,8,3],"default":[3,4,7,8,9,10,5],moebiu:[7,5],cusp_width:[9,8,3],until:2,independ:[10,5],below:8,fundament:[9,8],jordi:[7,5],otherwis:[5,8,10,7,3],problem:9,similar:7,one_odd_subgroup:8,thirteen:8,curv:3,kfarei:[9,8],gamma_constructor:6,schnep:8,creat:[9,8,11],"int":2,proven:8,repres:[2,3,6,7,8,9,10],continu:[8,2,11],proper:11,is_regular_cusp:3,kur08:8,exist:2,file:[2,8],permutationgroupel:8,rang:[4,9],modular_symbol:11,check:[2,3,5,6,8,9,11],probabl:4,denot:[9,8],parabol:[8,7,3],polygon:9,when:[0,3],detail:[8,3],is_parent_of:3,reduct:[7,11],tim:[9,8],acton:[0,9],valid:[4,11,8,3],bool:8,varieti:11,test:[0,3,5,6,7,8,9,10,11],congruencesubgroupbas:11,you:8,farey_symbol:[9,5,10,7,3],relat:[2,8],intend:[11,3],determin:[0,11],fulli:7,sequenc:8,symbol:[],vertex:8,docstr:8,lario:3,eigenvalu:[7,3],consid:8,cohenoesterl:5,congroup:2,reduc:[4,9,6,3],"_s2":8,faster:8,algorithm:[2,3,4,6,7,8,10,5],"_repr_":11,arithmeticsubgroup:[11,8,3],bottom:4,orbit:[5,8,2,7,3],syllabl:9,preimag:[8,7,11],geometr:[9,8],fact:8,time:[8,3],dyer:8,invari:[7,3]},objtypes:{"0":"py:module","1":"py:method","2":"py:class","3":"py:function","4":"py:attribute"},objnames:{"0":["py","module","Python module"],"1":["py","method","Python method"],"2":["py","class","Python class"],"3":["py","function","Python function"],"4":["py","attribute","Python attribute"]},filenames:["sage/modular/arithgroup/arithgroup_element","index","sage/modular/arithgroup/congroup","sage/modular/arithgroup/arithgroup_generic","sage/modular/arithgroup/congroup_sl2z","sage/modular/arithgroup/congroup_gamma1","sage/modular/arithgroup/congroup_gamma","sage/modular/arithgroup/congroup_gammaH","sage/modular/arithgroup/arithgroup_perm","sage/modular/arithgroup/farey_symbol","sage/modular/arithgroup/congroup_gamma0","sage/modular/arithgroup/congroup_generic"],titles:["Elements of Arithmetic Subgroups","Arithmetic Subgroups of <span class=\"math\">\\({\\rm SL}_2({\\bf Z})\\)</span>","Cython helper functions for congruence subgroups","Arithmetic subgroups (finite index subgroups of <span class=\"math\">\\({\\rm SL}_2(\\ZZ)\\)</span>)","The modular group <span class=\"math\">\\({\\rm SL}_2(\\ZZ)\\)</span>","Congruence Subgroup <span class=\"math\">\\(\\Gamma_1(N)\\)</span>","Congruence Subgroup <span class=\"math\">\\(\\Gamma(N)\\)</span>","Congruence Subgroup <span class=\"math\">\\(\\Gamma_H(N)\\)</span>","Arithmetic subgroups defined by permutations of cosets","Farey Symbol for arithmetic subgroups of <span class=\"math\">\\({\\rm PSL}_2(\\ZZ)\\)</span>","Congruence Subgroup <span class=\"math\">\\(\\Gamma_0(N)\\)</span>","Congruence arithmetic subgroups of <span class=\"math\">\\({\\rm SL}_2(\\ZZ)\\)</span>"],objects:{"sage.modular.arithgroup.congroup_gamma0.Gamma0_class":{index:[10,1,1,""],coset_reps:[10,1,1,""],ncusps:[10,1,1,""],gamma_h_subgroups:[10,1,1,""],nu2:[10,1,1,""],is_even:[10,1,1,""],nu3:[10,1,1,""],divisor_subgroups:[10,1,1,""],generators:[10,1,1,""],is_subgroup:[10,1,1,""]},"sage.modular.arithgroup.congroup_generic.CongruenceSubgroup":{image_mod_n:[11,1,1,""],modular_symbols:[11,1,1,""],modular_abelian_variety:[11,1,1,""]},"sage.modular.arithgroup.congroup_gamma.Gamma_class":{index:[6,1,1,""],are_equivalent:[6,1,1,""],ncusps:[6,1,1,""],nirregcusps:[6,1,1,""],nu3:[6,1,1,""],image_mod_n:[6,1,1,""],reduce_cusp:[6,1,1,""]},"sage.modular.arithgroup.arithgroup_perm":{HsuExample10:[8,3,1,""],HsuExample18:[8,3,1,""],OddArithmeticSubgroup_Permutation:[8,2,1,""],EvenArithmeticSubgroup_Permutation:[8,2,1,""],sl2z_word_problem:[8,3,1,""],eval_sl2z_word:[8,3,1,""],ArithmeticSubgroup_Permutation_class:[8,2,1,""],ArithmeticSubgroup_Permutation:[8,3,1,""],word_of_perms:[8,3,1,""]},"sage.modular.arithgroup.congroup_gammaH":{mumu:[7,3,1,""],GammaH_class:[7,2,1,""],GammaH_constructor:[7,3,1,""],is_GammaH:[7,3,1,""]},"sage.modular.arithgroup.congroup_sl2z.SL2Z_class":{is_subgroup:[4,1,1,""],random_element:[4,1,1,""],reduce_cusp:[4,1,1,""]},"sage.modular.arithgroup.arithgroup_generic":{ArithmeticSubgroup:[3,2,1,""],is_ArithmeticSubgroup:[3,3,1,""]},"sage.modular.arithgroup.farey_symbol":{Farey:[9,2,1,""]},"sage.modular.arithgroup.congroup_sl2z":{SL2Z_class:[4,2,1,""],is_SL2Z:[4,3,1,""]},"sage.modular.arithgroup.congroup":{generators_helper:[2,3,1,""],degeneracy_coset_representatives_gamma0:[2,3,1,""],degeneracy_coset_representatives_gamma1:[2,3,1,""]},"sage.modular.arithgroup.congroup_generic.CongruenceSubgroupBase":{is_congruence:[11,1,1,""],level:[11,1,1,""]},"sage.modular.arithgroup.congroup_gammaH.GammaH_class":{index:[7,1,1,""],coset_reps:[7,1,1,""],ncusps:[7,1,1,""],nirregcusps:[7,1,1,""],extend:[7,1,1,""],nu2:[7,1,1,""],to_even_subgroup:[7,1,1,""],dimension_new_cusp_forms:[7,1,1,""],is_even:[7,1,1,""],nu3:[7,1,1,""],restrict:[7,1,1,""],generators:[7,1,1,""],nregcusps:[7,1,1,""],divisor_subgroups:[7,1,1,""],reduce_cusp:[7,1,1,""],gamma0_coset_reps:[7,1,1,""],image_mod_n:[7,1,1,""],is_subgroup:[7,1,1,""]},"sage.modular.arithgroup.congroup_generic":{CongruenceSubgroup:[11,2,1,""],CongruenceSubgroupFromGroup:[11,2,1,""],is_CongruenceSubgroup:[11,3,1,""],CongruenceSubgroup_constructor:[11,3,1,""],CongruenceSubgroupBase:[11,2,1,""]},"sage.modular.arithgroup.arithgroup_perm.EvenArithmeticSubgroup_Permutation":{coset_reps:[8,1,1,""],ncusps:[8,1,1,""],nu2:[8,1,1,""],to_even_subgroup:[8,1,1,""],is_even:[8,1,1,""],nu3:[8,1,1,""],todd_coxeter_s2_s3:[8,1,1,""],todd_coxeter_l_s2:[8,1,1,""],todd_coxeter:[8,1,1,""],cusp_widths:[8,1,1,""],odd_subgroups:[8,1,1,""],is_odd:[8,1,1,""],one_odd_subgroup:[8,1,1,""]},"sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation_class":{index:[8,1,1,""],is_congruence:[8,1,1,""],perm_group:[8,1,1,""],S3:[8,1,1,""],S2:[8,1,1,""],relabel:[8,1,1,""],L:[8,1,1,""],random_element:[8,1,1,""],surgroups:[8,1,1,""],R:[8,1,1,""],generalised_level:[8,1,1,""],congruence_closure:[8,1,1,""],coset_graph:[8,1,1,""],permutation_action:[8,1,1,""],is_normal:[8,1,1,""]},"sage.modular.arithgroup.congroup_generic.CongruenceSubgroupFromGroup":{index:[11,1,1,""],image_mod_n:[11,1,1,""],to_even_subgroup:[11,1,1,""]},"sage.modular.arithgroup.arithgroup_element.ArithmeticSubgroupElement":{a:[0,1,1,""],determinant:[0,1,1,""],b:[0,1,1,""],matrix:[0,1,1,""],det:[0,1,1,""],c:[0,1,1,""],acton:[0,1,1,""],d:[0,1,1,""]},"sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup":{is_congruence:[3,1,1,""],is_parent_of:[3,1,1,""],dimension_cusp_forms:[3,1,1,""],is_regular_cusp:[3,1,1,""],cusp_width:[3,1,1,""],generalised_level:[3,1,1,""],reduce_cusp:[3,1,1,""],index:[3,1,1,""],projective_index:[3,1,1,""],coset_reps:[3,1,1,""],sturm_bound:[3,1,1,""],as_permutation_group:[3,1,1,""],nirregcusps:[3,1,1,""],generators:[3,1,1,""],nregcusps:[3,1,1,""],dimension_modular_forms:[3,1,1,""],is_subgroup:[3,1,1,""],farey_symbol:[3,1,1,""],cusp_data:[3,1,1,""],ncusps:[3,1,1,""],is_abelian:[3,1,1,""],is_finite:[3,1,1,""],nu2:[3,1,1,""],nu3:[3,1,1,""],Element:[3,4,1,""],are_equivalent:[3,1,1,""],cusps:[3,1,1,""],gen:[3,1,1,""],todd_coxeter:[3,1,1,""],to_even_subgroup:[3,1,1,""],is_even:[3,1,1,""],gens:[3,1,1,""],ngens:[3,1,1,""],dimension_eis:[3,1,1,""],genus:[3,1,1,""],is_odd:[3,1,1,""],order:[3,1,1,""],is_normal:[3,1,1,""]},"sage.modular.arithgroup.arithgroup_element":{ArithmeticSubgroupElement:[0,2,1,""]},"sage.modular.arithgroup.congroup_gamma":{Gamma_class:[6,2,1,""],is_Gamma:[6,3,1,""],Gamma_constructor:[6,3,1,""]},"sage.modular.arithgroup.arithgroup_perm.OddArithmeticSubgroup_Permutation":{ncusps:[8,1,1,""],nu2:[8,1,1,""],to_even_subgroup:[8,1,1,""],is_even:[8,1,1,""],nu3:[8,1,1,""],cusp_widths:[8,1,1,""],nregcusps:[8,1,1,""],is_odd:[8,1,1,""],nirregcusps:[8,1,1,""]},"sage.modular.arithgroup.congroup_gamma1":{Gamma1_class:[5,2,1,""],is_Gamma1:[5,3,1,""],Gamma1_constructor:[5,3,1,""]},"sage.modular.arithgroup.congroup_gamma0":{Gamma0_class:[10,2,1,""],Gamma0_constructor:[10,3,1,""],is_Gamma0:[10,3,1,""]},"sage.modular.arithgroup.congroup_gamma1.Gamma1_class":{index:[5,1,1,""],dimension_modular_forms:[5,1,1,""],ncusps:[5,1,1,""],nu2:[5,1,1,""],dimension_cusp_forms:[5,1,1,""],dimension_new_cusp_forms:[5,1,1,""],is_even:[5,1,1,""],nu3:[5,1,1,""],generators:[5,1,1,""],dimension_eis:[5,1,1,""],is_subgroup:[5,1,1,""]},"sage.modular.arithgroup.farey_symbol.Farey":{word_problem:[9,1,1,""],fractions:[9,1,1,""],paired_sides:[9,1,1,""],coset_reps:[9,1,1,""],index:[9,1,1,""],level:[9,1,1,""],nu2:[9,1,1,""],cusp_class:[9,1,1,""],nu3:[9,1,1,""],generators:[9,1,1,""],pairing_matrices_to_tietze_index:[9,1,1,""],cusp_widths:[9,1,1,""],pairing_matrices:[9,1,1,""],cusps:[9,1,1,""],reduce_to_cusp:[9,1,1,""],genus:[9,1,1,""],fundamental_domain:[9,1,1,""],pairings:[9,1,1,""]},"sage.modular.arithgroup":{arithgroup_element:[0,0,0,"-"],farey_symbol:[9,0,0,"-"],congroup:[2,0,0,"-"],congroup_generic:[11,0,0,"-"],arithgroup_generic:[3,0,0,"-"],congroup_gamma:[6,0,0,"-"],congroup_gammaH:[7,0,0,"-"],arithgroup_perm:[8,0,0,"-"],congroup_gamma0:[10,0,0,"-"],congroup_gamma1:[5,0,0,"-"],congroup_sl2z:[4,0,0,"-"]}},titleterms:{"function":2,index:3,coset:8,group:4,congruenc:[2,11,6,7,10,5],helper:2,cython:2,symbol:9,finit:3,indic:1,element:0,modular:4,permut:8,arithmet:[0,1,3,8,9,11],farei:9,tabl:1,todo:8,defin:8,subgroup:[0,1,2,3,5,6,7,8,9,10,11]}})12