CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download

Sage Reference Manual

Project: SageManifolds
Views: 717109
1
Search.setIndex({envversion:42,terms:{represent:[7,6,3,10,2],finite_r:[0,6,2,4,5,7,8,9,10,11,12,13,14,15,16,17],code:[4,13,17],partial:[0,11],is_subcategori:4,finite_field_prime_modn:[0,6,17,10],illustr:[8,15,4],global:4,roe:[0,13,16],four:16,residuefield:0,prefix:13,ellipt:0,deprecationwarn:[7,6,15],follow:[4,13,10,15,16,2],disk:16,whose:[8,11,3,5],typeerror:[3,12],depend:4,albrecht:[5,17,10,2],kfix:[14,11,12],demey:[15,13],elsewher:15,articl:13,get_object:4,pth_root:3,under:[6,10,16],some_el:[3,13],norm:0,inject:11,digit:7,random:[6,4,7,10,13,15],everi:[3,13,16,2],string:[8,5,13,2],fals:[6,3,4,5,7,9,10,11,13,2,16,17],uniquefactori:[0,4],sage_object:[10,16,2],fall:[0,13],veri:[0,4],affect:4,ticket:[0,3,4,9,10,13,15,2],late_import:7,seealso:12,log_repr:[6,10,2],foo:13,doesn:0,level:3,z16:4,list:[4,9,13,15,5,2],residuefieldfactori:0,iter:[15,13,10],factori:[0,4],arithmeticerror:5,vector:13,frobeniusendomorphism_givaro:12,small:0,initialis:4,dimens:[4,13],finitefield_ntl_gf2eel:2,work:[0,6,11,3,13],factored_unit_ord:[4,13],natur:15,ngen:[3,13],direct:[8,4],consequ:4,second:[4,16],multi_polynomial_id:0,pass:13,further:13,odd:4,codomain:[0,11,12],append:13,compat:[7,6,3,13,16],index:[0,1,3,9,16],what:4,reductionmap:0,compar:[3,13],neg:[0,4],section:[0,11,12],set_random_se:7,integer_represent:[10,2],integermod:4,version:[0,3,4,8,13,17,15,5],is_irreduc:7,"new":[0,6,10,16,13],method:[6,3,7,13,11,10,2],contrast:4,construct:[6,3,4,7,8,13,11,17,15],is_finit:[3,4,13],finitefield_pari_ffelt_with_categori:10,cython:[4,2],coerce_map_from:0,gener:[0,6,2,3,4,5,7,8,10,14,13,15,16,17],never:3,coeffici:[0,13,2],here:[14,4,13],closur:[],shouldn:10,simon:4,let:3,conway_polynomial_:13,lex:0,surject:11,modifi:16,sinc:[4,13,11,14,17,15],valu:[3,13,10],square_roots_of_on:4,search:1,divisor:[0,4,16,13],unpickle_finitefieldelement_pari_ffelt:5,root:[6,2,3,4,7,8,10,13,15,5,17],precis:4,c18:4,algebraic_closure_finite_field:[3,13],behav:4,implement:[],proof:[4,13],quotient:[0,4,16,13],is_perfect:13,c140:4,via:[],finitefielditer:13,extra:[0,4,13],pseudoconwaylattic:16,primit:[6,7,8,9,13,17,15,16],modul:[7,1,3],element_givaro:[6,10],deprec:[],"boolean":[3,13,16],subcategori:4,famili:[3,16],powerseriesr:[6,10],coercion:[0,3,4,10,13],convert_map_from:0,unit:[13,4,10,2],highli:10,from:[0,6,3,4,7,9,13,11,12,5,15,16,2],unit_group_expon:[4,13],would:4,memori:[6,10],has_coerce_map_from:4,frob:[6,11,12,13],two:[5,3,9,4,13],next:[13,8,15,4,10],call:[0,6,3,4,5,7,10,11,12,13,15,16,17],finitefield_givaro_with_categori:10,recommend:3,nativeintstruct:2,care:4,type:[],commut:4,more:[7,6,4,10,13],gf2e:2,identitymorph:[6,13],desir:13,minim:[6,3,7,8,10,13,16,2],comparison:[6,11,13],henc:[11,4,13],relat:4,problem:[13,10],probabilist:4,frobeniusendomorphism_prim:14,warn:[0,4],a_times_b_plus_c:[6,10],particular:[3,4],known:16,rueth:13,must:[6,4,7,8,13,10,15,17],logarithm:5,none:[0,6,2,3,4,7,8,9,10,13,15,17],join:4,sectionfinitefieldhomomorphism_prim:14,alia:[8,3],flori:16,uniqu:[0,3,4,13,16,5],conceptu:3,groebner_basi:0,ubar:0,can:[0,6,3,4,9,13,15,16,2],endian:7,create_key_and_extra_arg:[0,4],malb:[10,2],zech:[6,10],def:4,pierr:16,control:[7,6,10],bogu:4,give:[7,6,17,13,2],scrimshaw:13,calcul:[0,6,10],accept:3,t_fix:[11,12],is_noetherian:4,want:4,david:[0,2,4,16,13],cardin:[0,6,3,4,7,8,10,13,2],krull_dimens:4,alwai:[3,4,13,11,17,16],cours:[15,4],multipl:[6,2,3,4,5,7,8,10,13,15,16,17],z21:13,tbar:0,rather:16,anoth:13,hom:[0,11,9,12],first_lexicograph:9,perhap:4,"_element_constructor_":10,divis:4,how:[13,10],fpp:0,answer:4,symposium:16,updat:4,map:[0,3,4,13,11,14,15],algebra:[],chines:4,after:[0,7],variant:13,sagex:4,befor:[0,2],unit_group:4,mai:[6,3,4,10],end:9,is_integermodr:4,data:[0,3,10],c10:4,essenti:0,johnson:13,tfix:[11,12],divid:[0,4,16],correspond:[3,4],residuefinitefield_givaro_with_categori:0,element:[],inform:[4,2],commutativ:4,allow:4,zbar:0,finitefield_pari_ffelt:[0,8],lambda:3,order:[0,6,2,3,4,5,7,8,9,10,11,13,15,16,17],multivari:0,inessenti:0,composit:4,is_squar:[3,5,4,10,2],over:[0,6,2,3,4,5,7,8,10,11,13,15,16,17],move:0,becaus:[3,13,10],algebraicclosurefinitefield_pseudo_conway_with_categori:3,report:4,through:13,same:[3,14,4,13,15],equip:4,paramet:4,perfect:[13,10],log_to_int:[6,10],fetch_int:[7,6,10,2],group:[6,4,5,7,8,9,13,17,15,16,2],save:[15,4],as_finite_field_el:3,chosen:[4,5],fix:[0,4,9,10,11,12,14,15,2],fixed_field:[14,11,12],whether:[0,4,16,13],drawback:13,algebraicclosurefinitefield:3,pcl:16,comprehens:15,therefor:13,might:[4,13],easier:13,ideal:[0,4],them:[3,13],doctest:[0,6,4,7,13,10,15,5,2],"return":[0,6,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17],thei:[3,16,15],python:[15,5,4,10],extra_arg:4,supersed:13,poly_repr:[7,6,10],initi:[0,3,4,8,13,17,15,5],ring_of_integ:0,framework:0,instead:[0,6,7,10,13,5],now:[0,13],finitefield_prime_modn:[0,17],choic:4,conway_polynomi:[3,5,16],name:[0,6,2,3,4,7,8,10,11,12,13,15,5,17],trac:[0,6,3,4,7,9,10,13,15,2],edit:10,revert:4,unpickl:13,separ:13,each:[3,4,13],finitepolyextel:[5,10,2],found:[0,4],prime_subfield:[7,6,10,2],modn:13,valuat:0,subset:0,domain:[0,14,11,9,12],weight:[10,2],finitefield_ext_pari:15,check_consist:16,finitefield_prime_modn_with_categori:[6,10],brochard:13,principal_id:4,fraction:[0,16],coprim:4,expect:13,our:14,differ:[6,3,4,9,15,16],tenth:16,reduct:[0,6,7],special:[14,12],out:4,variabl:[0,6,7,8,10,11,12,13,15,5,2],finitefield_givaroel:[6,10],appropri:3,robert:[4,10],unpickle_cache_givaro:10,unit_gen:4,categori:[0,6,3,4,9,13,11,17],is_field:[8,15,4,13],lattic:[3,16],print:[7,6,15,10],variable_nam:13,correct:4,math:4,reduction_map:0,random_el:[6,4,13,10,5,2],finitefield_givaro_iter:10,residuefinitefield_pari_ffelt_with_categori:0,gf2:7,runtimeerror:16,infin:3,is_prim:[4,10],standard:[0,2],reason:3,base:[],ntl:[0,7,13,2],dictionari:13,ask:[6,10],org:[7,6,15],basi:0,multiplicative_gener:[6,4,7,8,13,17,15],cremona:0,could:3,traceback:[6,3,4,5,7,10,11,12,13,15,16,17],put:4,unpickle_finitefield_ext:13,residuefinitefield_prime_modn:0,keep:3,multiplicative_group_is_cycl:4,thing:13,length:5,enforc:[6,10],place:0,unabl:3,principl:13,base_extend:0,sageobject:[10,16,2],origin:13,pleas:4,major:16,suffix:[11,12],finite_field_bas:[6,7,8,13,17,15],misc:3,number:[0,6,3,4,7,8,13,15,16,2],lenstra:13,restart:[15,4],alreadi:[4,13],messag:4,bradshaw:[4,10],remak:15,mistakenli:4,unit_group_ord:4,lexicograph:16,size:[0,6,2,3,4,7,8,9,10,11,12,13,14,15,5,17],given:[0,6,2,4,5,7,9,10,13,15,16,17],smaller:13,charpoli:[8,15,5,2],finitefield:[6,2,7,8,13,10,15,5,17],unknown:4,residuefinitefield_prime_modn_with_categori:0,system:[0,3],least:[0,8,16],numberfield:[0,13],necessarili:[3,14],is_zero:5,"_fix":[11,12],siam:16,hom_finite_field_givaro:12,"final":16,store:[10,2],assign:4,option:[6,2,3,4,7,8,10,13,15,5,17],travi:13,groebner:0,copi:0,pari:[],is_ident:11,part:[15,4],pseudo_conwai:[3,13],c62500:4,exactli:4,than:[0,6,3,4,7,8,10,5,16,2],king:4,john:0,monogen:0,krull:4,provid:[11,4,13],remov:3,zero:[5,13,2],structur:[0,3,4,10,16,2],polmod:[],project:0,f19:4,were:2,posit:[13,3,4,16,15],loehr:16,comput:[0,4,8,13,15,16],is_on:[5,10,2],prime_abov:0,julian:13,ani:[0,11,13,16],compon:4,finitefieldhomomorphism_gener:[14,11,12],c20499647385305088000000:4,have:[0,3,4,13,15],need:[13,6,4,16,10],seen:4,notimplementederror:13,minu:13,lie:5,ellipticcurv:0,squar:[3,5,4,10,2],equival:2,output:[0,6,2,3,4,5,7,8,10,11,12,13,14,15,16,17],latter:[6,4,7,8,17,15],note:[11,15,4,13],also:[0,6,3,4,9,10,13,15,16],hl99:16,discret:[5,10,16],take:[0,3,13,16],which:[0,6,2,3,4,7,8,10,11,13,15,16,17],pyx:5,even:[13,4,10],all:[0,6,4,5,9,10,13,16,2],sure:4,unless:[17,13],c156:4,trace:2,integermodfactori:4,track:3,sagemath:[7,6,15],object:[0,3,4,8,10,13,16],most:[6,3,4,5,7,10,11,12,13,15,16,17],specifi:[0,6,4,13,8],pair:13,alpha:[8,15,5,13],prescrib:4,"class":[],pushout:17,adrien:13,synonym:4,residuefield_gener:0,simplif:11,doc:10,later:4,request:16,doe:[6,5,10],univari:[0,5,4,10,13],determin:[3,13,15],use_databas:[3,16],xavier:[6,11,14,12,13],"_cach":[10,2],fact:4,is_inject:11,ffelt:[],frobeniusendomorphism_gener:11,algebraicclosurefinitefield_gener:3,finitefield_ntl_gf2e_with_categori:[7,10],sage:[0,6,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17],z12:13,is_conwai:13,session:[4,13],finite_field_pari_ffelt:[0,8,10],integermodring_gener:[4,17],trivial:[3,4],find:[8,16],homomorph:[0,9],caruso:[6,11,14,12,13],impact:4,current:[13,3,4,10],onli:[0,6,3,4,5,7,13,11,17,16],slow:0,indexerror:[7,6,17],nth_root:3,bbar:0,solut:4,should:[3,13],factor:[0,2,4,10,13],primitive_el:13,c2058:4,abelian:4,next_prim:[0,3,4,13,17,5,2],liftingmap:0,variou:[0,7,3,4,13],stop:16,repr:[0,6,10,7],first:[0,6,4,16,10],soon:16,self:[6,2,3,4,7,8,9,10,11,12,13,14,15,5,17],nativ:15,cannot:[3,13,15],residuefinitefield_givaro:0,multiplicative_ord:[3,4,7,8,10,13,15,5],givaro:[],gen:[0,6,2,3,4,7,8,10,11,12,13,15,5,17],requir:[6,10,16,8],powa:4,prime:[],finitefield_givaro:[0,6,12,10],bar:0,keyword:[4,13],crt:4,emb:[14,11,3,12],cyclic:4,is_unique_factorization_domain:4,twice:4,integr:4,contain:[0,3,4,5],coerc:[2,3,13,10,15],vincent:3,where:[0,6,2,3,4,7,10,11,12,13,14,15,5,17],finitefield_ntl_gf2:[0,7],view:[10,2],moduli:[9,4],set:[6,3,4,9,13,10,15],modulo:[],dump:[0,3,8,13,10,15,5,2],startup:7,accord:4,endomorph:[6,9,13,11,12,14],see:[6,3,4,7,10,13,15,16,2],residuefieldhomomorphism_glob:0,result:[0,6,3,4,10,13],arg:[6,13,10],fail:[4,2],close:3,modulu:[0,6,2,4,7,8,9,10,13,15,5,17],lift_map:0,extend:[0,3,5,10,2],monoid:4,databas:16,wikipedia:13,f23:4,list_of_elements_of_multiplicative_group:4,enough:15,smallest:[3,13,2],between:[0,3,4,9,13,11,12,15],"import":[6,3,4,7,13,11,12,15,16,2],pari_ffelt:[8,5,13,2],fraction_field:0,verifi:0,assumpt:14,august:3,kei:[0,4,13],maximal_ord:0,extens:[],lazi:3,len:[9,4],integermodr:4,solv:[13,10],residuefinitefield_pari_ffelt:0,import_data:2,addit:3,c22:4,satisfi:[6,3,10,16],informatik:[10,2],last:[6,3,4,5,7,10,11,12,13,15,16,17],howev:[15,4,10],annual:16,equal:[6,3,16,13,10,5,2],nile:13,unpickle_finitefield_prm:13,algebraic_closur:[3,13],instanc:[3,12,4],hom_finite_field:[14,11,12],fast_method:3,mani:[6,3,10,2],mean:[3,13],whole:[0,4],c110:4,load:[0,3,4,5,8,10,13,15,16,2],among:16,simpli:10,author:[0,6,2,3,4,5,8,10,11,12,13,14,15,16,17],pow:[4,10],ringhomomorphism_im_gen:11,residu:[],distinguish:[8,4,13],pol:5,littl:7,respect:[3,4,5],zeta:13,assum:4,poli:[7,6,4,10,13],speak:13,quit:15,hom_prime_finite_field:14,invert:4,infinit:3,three:[6,16],been:[0,4],ringhomset_gener:9,f31a:4,intp:0,interpret:[6,10],basic:[11,5],gens_valu:4,valueerror:[3,4,13,11,10,15,5,2],quickli:2,imag:[11,3],convert:[3,4],argument:[0,4,13],assert:4,integer_mod_r:[4,13,17],lift:[0,4,5],element_bas:[5,10,2],togeth:[3,13],c12:4,c3188646:4,rang:[8,15,4,13],those:0,convers:3,"case":[4,5],determinist:4,ident:[6,11,3,14,13],verbos:0,properti:3,defin:[0,3,13,11,5,15,16,2],"while":10,cach:[0,6,4,10,13],sqrt17bar:0,algebraicclosurefinitefieldel:3,c28:4,homset:[],a_times_b_minus_c:[6,10],irreduc:[0,8,15,13,16],canon:[0,3,4,13],non:[0,3,4,13,5,2],uncov:4,zmod:4,kwarg:13,costli:4,abov:[4,13],quadrat:4,noetherian:4,sever:[11,10],parent:[0,3,4,8,10,13,15,5,2],multiplicative_subgroup:4,uniti:13,develop:4,finitefieldhomset:9,etc:10,perform:[4,10,2],make:[15,16],belong:4,sqrt:[0,3,5,10,2],int_repr:[6,10],binari:10,"_poly_repr":10,element_pari_ffelt:5,fieldel:3,phi:[0,9],http:[7,6,15],algebraicclosurefinitefield_pseudo_conwai:3,optim:10,effect:4,moment:13,rais:[4,13,10,16,5,2],user:[7,6,4,10],refin:4,defn:[12,11,3,9,13],recent:[6,3,4,5,7,10,11,12,13,15,16,17],polynomial_el:2,gp_exp:4,kept:13,proceed:16,nevertheless:3,entri:13,thu:[6,10],cache_ntl_gf2:2,elem:[5,2],without:[7,6,4],pickl:13,exampl:[0,6,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17],command:[13,16],thi:[0,6,2,3,4,5,7,8,9,10,11,13,15,16,17],powb:4,model:2,isomorph:[11,3,9,4,13],moreov:[3,4],subgroup:4,compromis:4,pari_mod:15,just:[13,10],less:[0,6,4,7,8,10,5,2],erron:4,minimal_weight:[7,10,2],jeroen:[15,13],mistaken:4,detail:[6,4,7,10,13,15],abar:0,finitefieldhomomorphism_givaro:12,speed:[6,10],yet:[15,5,13,10],previous:[15,4,2],expon:[13,10],like:4,finitefieldelement_pari_ffelt:[8,5],except:[13,16,2],shortcut:13,add:0,c16777216:4,withequalitybyid:3,theorem:4,polynomial_r:13,input:[0,6,2,3,4,5,7,8,10,13,15,16,17],semigroup:4,subsequ:16,c16:4,around:13,stein:[0,4,8,10,17,15,5,2],format:[15,13],read:16,subfield:[6,3,7,10,11,12,13,14,2],subquoti:4,finite_field_ntl_gf2:[0,7,10],know:4,factored_ord:[4,13],characterist:[],int_to_log:[6,10],is_unit:[0,5,10,2],mod:[0,12,4],is_polynomi:2,c55440:4,interv:4,is_finitefield:13,reload:16,to_ord:0,integ:[],deglex:0,"_log_to_int":10,princip:0,residue_field:[0,13],necessari:[3,5,10],either:4,martin:[5,17,10,2],minpoli:[3,2],sectionfinitefieldhomomorphism_gener:[14,11,12],page:1,underli:13,jean:16,simplifi:[6,13],exists_conway_polynomi:16,some:[8,11,3,5,10],back:[0,13],resolv:0,is_surject:11,intern:[0,10],enumer:4,algebraicextensionfunctor:13,mistak:4,guarante:[7,6,15,17,8],indirect:[0,4,7,10,5,2],peter:[8,3,5,13,16],librari:10,nonzero:[13,10,2],element_ntl_gf2:[5,2],collect:13,avoid:4,though:4,definit:[3,13],subclass:3,multipli:[6,10],mathemat:13,larg:[0,15,13,10],adleman:13,sequenc:4,condit:[6,3,10,16],base_r:[0,3],element_from_data:10,frobeniu:[6,11,14,12,13],prob:13,refer:[13,16],"55340232221128654849l":2,change_level:3,run:[0,4,8,10,17,5],power:[0,6,3,4,7,8,10,11,13,15,5],delecroix:3,is_aut:9,imposs:13,c_minus_a_times_b:[6,10],obtain:[6,3,4,7,8,13,17,15,16],vector_spac:[13,10,2],quotientfunctor:17,polygen:[0,7,15,13],although:13,cyclotomicfield:0,automorph:9,describ:16,to_v:0,unpicklefinitefield_ntl_gf2eel:2,actual:16,finite_field_givaro:[0,6,10],testsuit:[0,4,8,10,17,5],joyner:[4,2],acm:16,bruin:[8,3,5,13,16],degre:[0,6,2,3,4,5,7,8,10,13,15,16,17],constructor:[7,6,13,8],constructionfunctor:13,morphism:[],routin:[],doubl:13,absolut:[6,11,13],order_c:10,primal:4,within:13,bound:4,automat:[11,3,4],invers:11,frobenius_endomorph:[6,11,14,12,13],quotient_r:4,conwai:[],ensur:3,chang:[3,4,13],your:4,merg:3,f31b:4,inclus:[3,15],reduct_id:0,k16:[8,15],wai:[6,3,4,7,10,13],element_class:3,endormorph:11,support:[0,11,13],frobeniusendomorphism_finite_field:[14,11,12],"long":[13,5,4,16,10],custom:[17,13],avail:16,arithmet:[6,4,13,11,10,2],includ:[4,10,2],lot:10,"var":[5,13,2],strictli:0,whenev:16,stopiter:[13,10],residuefinitefield_ntl_gf2:0,polynomial_zmod_flint:10,"function":[0,3,4,13,10,16,2],previous_prime_pow:10,minimal_polynomi:3,form:[0,4],forc:[3,4],tupl:[0,14,11,12,4],despit:13,maxim:0,is_integral_domain:4,"_int_repr":10,toi:0,zeta_ord:13,uni:[10,2],"true":[0,6,2,3,4,5,7,8,9,10,11,14,13,15,16,17],bug:0,element_ext_pari:5,finite_field:13,tripl:3,made:[11,3,13],finite_field_ext_pari:[8,15],consist:[14,11,15,12,4],possibl:[6,3,4,13],"default":[0,6,3,4,7,8,10,13,15,5,2],access:2,ringhomomorph:0,"abstract":13,below:13,otherwis:[13,4,16,10],embed:[3,4,13,11,14,12],remaind:4,impl:[0,6,7,8,13,15,5,2],curv:0,creat:[0,6,3,4,9,10,5],item:9,"int":[6,5,4,10,2],certain:16,dure:[6,4,10],kwd:[0,6,3,4,10,13],repres:[0,3,8,10,5,2],novemb:3,decreas:4,file:11,pth_power:3,exist:[4,5,2],cache_givaro:10,sqrt17:0,check:[0,4,9,13,10,2,16,17],probabl:[3,15],"_log_repr":10,when:[0,6,2,3,4,7,8,10,13,15,17],bremen:[10,2],refactor:17,field:[],other:[3,4,13],bool:[5,4,10],finitefieldhomomorphism_prim:14,test:[0,6,3,4,7,9,10,12,13,2,5,17],quotientring_gener:4,you:[13,6,15,4,10],runtim:4,"_type":13,integraldomain:4,create_object:[0,4],rijndael:[6,10],is_prime_field:[4,13,17],june:[8,5],docstr:15,polynomialr:[0,6,8,10,15,5],william:[0,4,8,10,17,15,5,2],polynomi:[],residuefinitefield_ntl_gf2e_with_categori:0,log:[6,5,10,2],sectionfinitefieldhomomorphism_givaro:12,unpickle_finitefield_givaroel:10,conwaypolynomi:16,quadratic_nonresidu:4,reduc:[0,6,10],faster:[6,3,10],algorithm:[4,8,13,10,15,16],monic:13,space:13,pseudo:[],z10:4,heath:16,probabilitst:4,discrimin:0,time:[13,3,4,16],serious:4,backward:[7,6,13],rep:10},objtypes:{"0":"py:module","1":"py:method","2":"py:class","3":"py:function","4":"py:attribute"},objnames:{"0":["py","module","Python module"],"1":["py","method","Python method"],"2":["py","class","Python class"],"3":["py","function","Python function"],"4":["py","attribute","Python attribute"]},filenames:["sage/rings/finite_rings/residue_field","index","sage/rings/finite_rings/element_ntl_gf2e","sage/rings/algebraic_closure_finite_field","sage/rings/finite_rings/integer_mod_ring","sage/rings/finite_rings/element_pari_ffelt","sage/rings/finite_rings/finite_field_givaro","sage/rings/finite_rings/finite_field_ntl_gf2e","sage/rings/finite_rings/finite_field_pari_ffelt","sage/rings/finite_rings/homset","sage/rings/finite_rings/element_givaro","sage/rings/finite_rings/hom_finite_field","sage/rings/finite_rings/hom_finite_field_givaro","sage/rings/finite_rings/finite_field_base","sage/rings/finite_rings/hom_prime_finite_field","sage/rings/finite_rings/finite_field_ext_pari","sage/rings/finite_rings/conway_polynomials","sage/rings/finite_rings/finite_field_prime_modn"],titles:["Finite residue fields.","Finite Rings","Finite Fields of characteristic 2.","Algebraic closures of finite fields","Ring <span class=\"math\">\\(\\ZZ/n\\ZZ\\)</span> of integers modulo <span class=\"math\">\\(n\\)</span>","Finite field elements implemented via PARI&#8217;s FFELT type","Givaro Finite Field","Finite Fields of Characteristic 2","Finite fields implemented via PARI&#8217;s FFELT type","Homset for Finite Fields","Givaro Field Elements","Finite field morphisms","Finite field morphisms using Givaro","Base Classes for Finite Fields","Finite field morphisms for prime fields","Finite Extension Fields implemented via PARI POLMODs (deprecated).","Routines for Conway and pseudo-Conway polynomials.","Finite Prime Fields"],objects:{"sage.rings.finite_rings":{finite_field_ntl_gf2e:[7,0,0,"-"],hom_finite_field_givaro:[12,0,0,"-"],integer_mod_ring:[4,0,0,"-"],finite_field_base:[13,0,0,"-"],finite_field_prime_modn:[17,0,0,"-"],hom_prime_finite_field:[14,0,0,"-"],element_givaro:[10,0,0,"-"],element_ntl_gf2e:[2,0,0,"-"],finite_field_givaro:[6,0,0,"-"],residue_field:[0,0,0,"-"],finite_field_pari_ffelt:[8,0,0,"-"],hom_finite_field:[11,0,0,"-"],finite_field_ext_pari:[15,0,0,"-"],conway_polynomials:[16,0,0,"-"],homset:[9,0,0,"-"],element_pari_ffelt:[5,0,0,"-"]},"sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic":{krull_dimension:[4,1,1,""],is_integral_domain:[4,1,1,""],is_noetherian:[4,1,1,""],quadratic_nonresidue:[4,1,1,""],cardinality:[4,1,1,""],unit_group_exponent:[4,1,1,""],list_of_elements_of_multiplicative_group:[4,1,1,""],is_field:[4,1,1,""],modulus:[4,1,1,""],factored_unit_order:[4,1,1,""],is_finite:[4,1,1,""],degree:[4,1,1,""],multiplicative_subgroups:[4,1,1,""],is_prime_field:[4,1,1,""],random_element:[4,1,1,""],unit_group:[4,1,1,""],unit_gens:[4,1,1,""],is_unique_factorization_domain:[4,1,1,""],unit_group_order:[4,1,1,""],multiplicative_generator:[4,1,1,""],extension:[4,1,1,""],characteristic:[4,1,1,""],multiplicative_group_is_cyclic:[4,1,1,""],order:[4,1,1,""],square_roots_of_one:[4,1,1,""],field:[4,1,1,""],factored_order:[4,1,1,""]},"sage.rings.finite_rings.element_ntl_gf2e":{Cache_ntl_gf2e:[2,2,1,""],FiniteField_ntl_gf2eElement:[2,2,1,""],unpickleFiniteField_ntl_gf2eElement:[2,3,1,""]},"sage.rings.finite_rings.finite_field_base":{FiniteField:[13,2,1,""],is_FiniteField:[13,3,1,""],FiniteFieldIterator:[13,2,1,""],unpickle_FiniteField_ext:[13,3,1,""],unpickle_FiniteField_prm:[13,3,1,""]},"sage.rings.finite_rings.hom_prime_finite_field":{SectionFiniteFieldHomomorphism_prime:[14,2,1,""],FrobeniusEndomorphism_prime:[14,2,1,""],FiniteFieldHomomorphism_prime:[14,2,1,""]},"sage.rings.finite_rings.finite_field_base.FiniteFieldIterator":{next:[13,1,1,""]},"sage.rings.finite_rings.finite_field_pari_ffelt":{FiniteField_pari_ffelt:[8,2,1,""]},"sage.rings.finite_rings.conway_polynomials.PseudoConwayLattice":{polynomial:[16,1,1,""],check_consistency:[16,1,1,""]},"sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro":{log_to_int:[6,1,1,""],fetch_int:[6,1,1,""],degree:[6,1,1,""],a_times_b_minus_c:[6,1,1,""],prime_subfield:[6,1,1,""],a_times_b_plus_c:[6,1,1,""],order:[6,1,1,""],characteristic:[6,1,1,""],random_element:[6,1,1,""],c_minus_a_times_b:[6,1,1,""],frobenius_endomorphism:[6,1,1,""],int_to_log:[6,1,1,""],gen:[6,1,1,""]},"sage.rings.finite_rings.residue_field.ReductionMap":{section:[0,1,1,""]},"sage.rings.finite_rings.finite_field_prime_modn":{FiniteField_prime_modn:[17,2,1,""]},"sage.rings.finite_rings.finite_field_ntl_gf2e":{late_import:[7,3,1,""],FiniteField_ntl_gf2e:[7,2,1,""]},"sage.rings.finite_rings.residue_field.ResidueFieldHomomorphism_global":{section:[0,1,1,""],lift:[0,1,1,""]},"sage.rings.finite_rings.element_givaro.Cache_givaro":{order_c:[10,1,1,""],log_to_int:[10,1,1,""],fetch_int:[10,1,1,""],exponent:[10,1,1,""],a_times_b_minus_c:[10,1,1,""],characteristic:[10,1,1,""],repr:[10,4,1,""],a_times_b_plus_c:[10,1,1,""],order:[10,1,1,""],random_element:[10,1,1,""],c_minus_a_times_b:[10,1,1,""],element_from_data:[10,1,1,""],int_to_log:[10,1,1,""],gen:[10,1,1,""]},"sage.rings.finite_rings.finite_field_givaro":{FiniteField_givaro:[6,2,1,""]},"sage.rings.finite_rings.element_pari_ffelt":{unpickle_FiniteFieldElement_pari_ffelt:[5,3,1,""],FiniteFieldElement_pari_ffelt:[5,2,1,""]},"sage.rings.finite_rings.hom_finite_field.FiniteFieldHomomorphism_generic":{section:[11,1,1,""],is_surjective:[11,1,1,""],is_injective:[11,1,1,""]},"sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic":{inclusion:[3,1,1,""],characteristic:[3,1,1,""],subfield:[3,1,1,""],is_finite:[3,1,1,""],gens:[3,1,1,""],ngens:[3,1,1,""],Element:[3,4,1,""],algebraic_closure:[3,1,1,""],some_elements:[3,1,1,""],cardinality:[3,1,1,""],gen:[3,1,1,""]},"sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt":{is_one:[5,1,1,""],log:[5,1,1,""],lift:[5,1,1,""],is_square:[5,1,1,""],sqrt:[5,1,1,""],is_zero:[5,1,1,""],charpoly:[5,1,1,""],multiplicative_order:[5,1,1,""],polynomial:[5,1,1,""],is_unit:[5,1,1,""]},"sage.rings.finite_rings.residue_field":{ResidueFieldFactory:[0,2,1,""],LiftingMap:[0,2,1,""],ResidueFiniteField_ntl_gf2e:[0,2,1,""],ResidueFiniteField_pari_ffelt:[0,2,1,""],ResidueField_generic:[0,2,1,""],ResidueFiniteField_prime_modn:[0,2,1,""],ResidueFiniteField_givaro:[0,2,1,""],ResidueFieldHomomorphism_global:[0,2,1,""],ReductionMap:[0,2,1,""]},"sage.rings.finite_rings.hom_finite_field.FrobeniusEndomorphism_finite_field":{power:[11,1,1,""],is_injective:[11,1,1,""],fixed_field:[11,1,1,""],is_identity:[11,1,1,""],is_surjective:[11,1,1,""],order:[11,1,1,""]},"sage.rings.finite_rings.element_givaro":{FiniteField_givaroElement:[10,2,1,""],unpickle_Cache_givaro:[10,3,1,""],Cache_givaro:[10,2,1,""],unpickle_FiniteField_givaroElement:[10,3,1,""],FiniteField_givaro_iterator:[10,2,1,""]},"sage.rings.finite_rings.conway_polynomials":{PseudoConwayLattice:[16,2,1,""],exists_conway_polynomial:[16,3,1,""],conway_polynomial:[16,3,1,""]},"sage.rings.finite_rings.element_givaro.FiniteField_givaro_iterator":{next:[10,1,1,""]},"sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteFieldElement":{change_level:[3,1,1,""],minimal_polynomial:[3,1,1,""],nth_root:[3,1,1,""],minpoly:[3,1,1,""],is_square:[3,1,1,""],sqrt:[3,1,1,""],pth_root:[3,1,1,""],pth_power:[3,1,1,""],multiplicative_order:[3,1,1,""],as_finite_field_element:[3,1,1,""]},"sage.rings.finite_rings.hom_finite_field_givaro.FrobeniusEndomorphism_givaro":{fixed_field:[12,1,1,""]},"sage.rings.finite_rings.hom_prime_finite_field.FrobeniusEndomorphism_prime":{fixed_field:[14,1,1,""]},"sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn":{degree:[17,1,1,""],characteristic:[17,1,1,""],is_prime_field:[17,1,1,""],order:[17,1,1,""],construction:[17,1,1,""],polynomial:[17,1,1,""],gen:[17,1,1,""]},"sage.rings.finite_rings.residue_field.ResidueField_generic":{lift_map:[0,1,1,""],reduction_map:[0,1,1,""],ideal:[0,1,1,""],lift:[0,1,1,""]},"sage.rings.finite_rings.finite_field_ext_pari.FiniteField_ext_pari":{characteristic:[15,1,1,""],gen:[15,1,1,""],degree:[15,1,1,""],order:[15,1,1,""]},"sage.rings.finite_rings.finite_field_ext_pari":{FiniteField_ext_pari:[15,2,1,""]},"sage.rings":{algebraic_closure_finite_field:[3,0,0,"-"]},"sage.rings.algebraic_closure_finite_field":{AlgebraicClosureFiniteField_generic:[3,2,1,""],AlgebraicClosureFiniteFieldElement:[3,2,1,""],AlgebraicClosureFiniteField:[3,3,1,""],AlgebraicClosureFiniteField_pseudo_conway:[3,2,1,""]},"sage.rings.finite_rings.element_givaro.FiniteField_givaroElement":{log_repr:[10,1,1,""],integer_representation:[10,1,1,""],log_to_int:[10,1,1,""],is_one:[10,1,1,""],log:[10,1,1,""],is_square:[10,1,1,""],poly_repr:[10,1,1,""],sqrt:[10,1,1,""],int_repr:[10,1,1,""],multiplicative_order:[10,1,1,""],polynomial:[10,1,1,""],is_unit:[10,1,1,""]},"sage.rings.finite_rings.integer_mod_ring":{IntegerModFactory:[4,2,1,""],IntegerModRing_generic:[4,2,1,""],crt:[4,3,1,""],is_IntegerModRing:[4,3,1,""]},"sage.rings.finite_rings.homset":{FiniteFieldHomset:[9,2,1,""]},"sage.rings.finite_rings.hom_finite_field":{FrobeniusEndomorphism_finite_field:[11,2,1,""],SectionFiniteFieldHomomorphism_generic:[11,2,1,""],FiniteFieldHomomorphism_generic:[11,2,1,""]},"sage.rings.finite_rings.element_ntl_gf2e.Cache_ntl_gf2e":{polynomial:[2,1,1,""],import_data:[2,1,1,""],fetch_int:[2,1,1,""],order:[2,1,1,""],degree:[2,1,1,""]},"sage.rings.finite_rings.residue_field.ResidueFieldFactory":{create_key_and_extra_args:[0,1,1,""],create_object:[0,1,1,""]},"sage.rings.finite_rings.finite_field_base.FiniteField":{polynomial_ring:[13,1,1,""],is_perfect:[13,1,1,""],zeta_order:[13,1,1,""],vector_space:[13,1,1,""],algebraic_closure:[13,1,1,""],polynomial:[13,1,1,""],zeta:[13,1,1,""],is_conway:[13,1,1,""],unit_group_exponent:[13,1,1,""],is_field:[13,1,1,""],subfields:[13,1,1,""],frobenius_endomorphism:[13,1,1,""],factored_unit_order:[13,1,1,""],is_prime_field:[13,1,1,""],primitive_element:[13,1,1,""],is_finite:[13,1,1,""],random_element:[13,1,1,""],construction:[13,1,1,""],some_elements:[13,1,1,""],cardinality:[13,1,1,""],gen:[13,1,1,""],multiplicative_generator:[13,1,1,""],extension:[13,1,1,""],modulus:[13,1,1,""],ngens:[13,1,1,""],order:[13,1,1,""],factored_order:[13,1,1,""]},"sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement":{integer_representation:[2,1,1,""],is_one:[2,1,1,""],weight:[2,1,1,""],log:[2,1,1,""],trace:[2,1,1,""],minpoly:[2,1,1,""],is_square:[2,1,1,""],sqrt:[2,1,1,""],charpoly:[2,1,1,""],polynomial:[2,1,1,""],is_unit:[2,1,1,""]},"sage.rings.finite_rings.integer_mod_ring.IntegerModFactory":{get_object:[4,1,1,""],create_key_and_extra_args:[4,1,1,""],create_object:[4,1,1,""]},"sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e":{fetch_int:[7,1,1,""],degree:[7,1,1,""],characteristic:[7,1,1,""],gen:[7,1,1,""],prime_subfield:[7,1,1,""],order:[7,1,1,""]},"sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt":{characteristic:[8,1,1,""],gen:[8,1,1,""],degree:[8,1,1,""],Element:[8,4,1,""]},"sage.rings.finite_rings.homset.FiniteFieldHomset":{index:[9,1,1,""],list:[9,1,1,""],order:[9,1,1,""],is_aut:[9,1,1,""]},"sage.rings.finite_rings.hom_finite_field_givaro":{SectionFiniteFieldHomomorphism_givaro:[12,2,1,""],FiniteFieldHomomorphism_givaro:[12,2,1,""],FrobeniusEndomorphism_givaro:[12,2,1,""]}},titleterms:{routin:16,via:[8,15,5],ffelt:[8,5],tabl:1,indic:1,residu:0,deprec:15,conwai:16,modulo:4,ring:[1,4],todo:3,field:[0,6,3,2,7,8,9,10,11,12,13,14,15,5,17],type:[8,5],polmod:15,algebra:3,finit:[0,1,3,6,7,8,9,13,11,12,17,14,15,5,2],pari:[8,15,5],closur:3,polynomi:16,base:13,characterist:[7,2],givaro:[6,12,10],"class":13,prime:[14,17],extens:15,pseudo:16,integ:4,element:[5,10],implement:[8,15,5],homset:9,morphism:[14,11,12]}})
2