Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
Sage Reference Manual
Project: SageManifolds
Views: 717109Search.setIndex({envversion:42,terms:{orthogon:[],poorli:15,four:5,fredrik:14,whose:16,typeerror:[10,11],ashandbook:12,concret:12,under:[15,16,11,12],hermann:13,maximafunct:15,digit:[14,2,6,13],function_exp_integral_:6,rise:[14,11,12],trigonometr:[],govern:15,affect:16,factori:[10,11,12,13,14],vector:[6,18],math:[0,2,6,8,10,12,13,15],verif:13,realintervalfield:10,bitstream:2,"_evalf_":12,direct:2,second:[15,12,13],"10r":6,blue:13,neg:[10,6,3,13,7],sign_funct:17,"new":[2,6],symmetr:11,functiondiracdelta:17,elimin:14,ginac:[10,13],abov:[10,8,13],here:[15,6,9,13],j_1:11,j_2:11,accur:15,j_4:11,j_5:11,marsaglia:8,j_7:11,j_8:11,path:16,wdj:15,eval_algebra:12,logarithmic_integral_funct:6,precis:[3,4,5,6,8,10,11,13,15],rao2011:7,ellipfun:2,fourier:[16,18],rceil:10,"773299834553605e":10,"15197367124989e":15,linearli:[15,12,13,5],boncelet:16,exponential_integral_1:6,ymin:13,unit:[14,13,17],plot:[2,18,7,6,5,8,10,13,14,16],describ:[2,7],expintegr:10,call:[0,3,10,11,12,13,15,14],spike:[],type:[10,13,16],until:[10,9],oscar:5,inflect:11,relat:[15,11,12],function_erf:10,warn:[16,3,7],hold:[0,3,4,8,10,15,14],fourier_series_valu:16,must:[0,3,4,8,10,11,12,13,15,16],word:2,work:[0,3,9,10,11,13,16,17],riemannzetalong:8,erf:[15,10,14],root:[10,11],polylogarithm:6,give:[2,5,6,10,11,15,14],jacobiamplitud:2,caution:16,want:18,mcneil:5,pughg:8,answer:11,verifi:[7,6,5,10,13,16],wolfram:12,outsid:[0,16,4],after:[10,12,14,13,16],wrong:15,find_root:[6,13],attempt:11,third:[15,13],arcco:0,first:[0,2,4,7,6,5,12,13,14,15,16],order:[3,5,8,10,12,13,14],origin:[0,2,13],over:[16,11],becaus:6,default_vari:16,myplot:16,arcsech:[2,4],function_log_integral_offset:6,fix:[0,3,7,6,10,12,13,15,16],better:7,"_mathematica_init_":[14,4],them:7,thei:[2,7,10,11,12,13,15],lambert:3,rectangl:[16,2],arctan2:0,barton:[15,12],arrow:2,each:[2,18,6,8,11,12,16],"02336191509997e":6,symmetri:11,minsymbol:9,function_arccsch:4,to_poly_solv:3,ellipticeu:15,rewrit:[14,2,7,5],daniel:13,ellipticec:15,adapt:13,got:[10,12],gov:6,linear:[15,16,8,13,14],abramowitz:[15,6,12,13,5],midpoint:16,infin:[6,8,10,13,14,15,16],standard:[14,6,5],angl:[0,15],traceback:[0,10,11,12],arccot:0,erfc:10,isn:12,confus:6,rang:[15,6,13],independ:[15,12,13,5],restrict:12,unlik:0,effchebi:12,agre:6,"01494840019482e":13,garri:2,airi:[],sometim:[15,6,12],toi:15,too:18,tol:[0,4,5,6,10,13,15],similarli:2,function_arccoth:4,inexact:6,signum:17,elliptickc:15,function_csc:0,technic:7,keyword:[10,16],princeton:11,provid:[15,6,11,13,9],riemann_sum_integral_approxim:16,matter:10,rai:0,manner:10,seem:15,pickl:10,recreat:13,ohana:7,latter:12,function_arcsin:0,even:[10,11],insur:16,though:15,object:[3,7,5,8,10,13,14,16],hypergeometric_u:15,letter:2,typ:13,simplif:[15,14,3],doc:10,doe:[15,10,3,14],is_termwise_finit:14,left:[0,3,4,8,10,11,9,15,16],section:15,dot:13,random:[15,6,12],sage:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18],speedup:7,radiu:14,kronecker_delta:17,involv:2,absolut:[10,6,8,18,14],maxima_funct:15,arctang:0,siev:7,function_co:0,stop:5,ceil:10,"33732515501151e":6,ellipticf:15,report:[10,12,16],specfun:12,"_add_":16,real_part:10,elliptic_:15,"public":[15,12],twice:2,bad:16,mortuza:17,bai:6,fourier_series_partial_sum:16,clebsch:[],result:[3,4,6,8,10,12,16],fail:10,best:10,onto:16,zernik:12,wikipedia:[2,3,5,6,8,10,12,13,15,17],figur:13,drawn:[2,7],extend:[10,6,16],min_max:9,physicist:12,hyperbolicfunct:4,eliminate_paramet:14,orthopoli:12,wstein:7,spikefunct:18,plot_fourier_series_partial_sum_hann:16,cot:[0,13],howev:[10,6,12,4,13],spike_funct:18,j_3:11,colatitud:15,unk:12,com:10,rational_param_as_tupl:14,kwd:[18,7,5,10,13,16],height:[16,18],permut:11,crisman:18,j_9:11,dougla:5,diff:[3,5,6,8,10,13,15,14],guid:12,assum:[12,6,3,16],summar:15,duplic:[15,16],fortran:11,numpi:[0,10],three:[2,11],been:[10,18,13,7],much:[11,8,7],evalf_float:4,mult:16,gen_laguerr:12,basic:10,quickli:7,argument:[2,3,4,7,6,5,8,10,11,12,13,16,9],johansson:14,ident:[14,2,6,13],tanh:[15,2,4],properti:[15,10,2,12,11],loggamma:10,calcul:[11,12],pairwis:14,"22854325868847e":6,function_gamma_inc:10,stairstep:7,kwarg:[2,8],h_n:16,sever:[15,3,13,17],make:[10,7],complex:[0,2,3,4,5,6,8,10,13,15],researchspac:2,complet:[15,2,12,8,7],simplify_hypergeometr:14,ellj:15,hann:16,hand:[16,12],"4684e":8,rais:10,techniqu:12,thu:[6,12],inherit:11,hypergeometricpfq:14,thi:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18],everyth:10,maxima:[0,3,4,5,6,8,10,12,13,14,15,16],just:10,inverse_jacobi_f:2,inverse_jacobi_n:2,yet:[10,14],ham:16,easi:[15,6],conjug:[0,10,3,4],friedrich:13,yoora:3,els:10,save:16,measur:0,arbitrari:[14,6,17,13,5],manual:2,contains_zero:12,www:[15,2,12,6,13],right:[0,3,4,8,10,9,15,16],deal:9,kearnei:[15,12],interv:[0,16,8,4],donald:12,indirect:9,total:11,condit:[15,11,8,13,5],foo:4,prime_pi:[6,7],arjona:5,confluent:15,plot_point:[16,13],elliptic_eu:15,oren:12,holomorph:13,slightli:[6,4],literatur:15,plot_fourier_series_partial_sum_cesaro:16,dilogarithm:3,"__mul__":16,elliptic_ec:15,produc:13,soc:8,list_of_pair:16,bound:6,wrap:[15,12],storag:11,wai:[15,16,6,13,5],support:[15,16,18,13,5],transform:[16,18],happi:12,avail:5,fraction:5,exponential_integr:6,arccsc:0,function_floor:10,form:[15,14,2],kroneck:[12,17],heat:16,"true":[0,3,18,5,6,7,8,10,12,13,14,15,16,4],patashnik:12,intern:2,reiter:12,cosec:[0,4],arccosh:[2,4],classic:8,trig:[0,2],functionheavisid:17,exist:14,log_gamma:10,orthogonalpolynomi:12,floor:10,end_point:16,when:[3,9,6,8,10,12,13,15,16],jone:[6,13],laguerr:12,test:[0,2,3,4,7,6,8,9,10,11,12,13,14,15,16,17],function_hurwitzzeta:8,function_sinh_integr:6,functionairybisimpl:5,consid:[0,16,14],subdivis:16,faster:[12,8],ignor:[10,14],time:[16,6,11,7],mathrm:10,max_symbol:9,zetaderiv:8,meval:15,arcsec:0,depend:[10,2],graph:7,decim:4,intermedi:8,elliptic:15,function_arctan2:0,string:[15,16,2,13],asymptot:[8,13],lambert_w_funct:3,"_maxima_init_":10,exact:[10,6],riemann:[16,6,8],function_arctanh:4,level:14,iter:5,round:[15,4],prevent:[0,10,3,8,4],arccosin:0,cosh:[14,6,4,13],cost:[12,7],s_elliptic_funct:2,imag_part:10,current:[0,3,4,8,10,15],function_exp_integr:6,stefan:12,function_arcsech:4,deriv:[5,6,8,10,13,14,16],gener:[],coeffici:[],e_1:6,satisfi:[2,3,8,12,13,15],tangent:[0,16,4],along:[0,2,3,4,5,6,10,13],wait:9,function_log:3,inverse_jacobi_nd:2,spherical_harmon:15,weird:15,digamma:10,commonli:13,extra:12,modul:[1,2,5,6,12,13,15,14],"1st":15,memori:7,compactli:16,prec:[3,5,6,8,10,11,15],chapter:5,finit:[15,14,11,12],visual:13,logarithm:[],graphic:[7,5,8,10,13,14,16],ulp:6,cap:12,uniqu:[2,13],airy_ai_simpl:5,can:[0,2,3,18,5,6,7,9,10,11,12,13,15,16,17],nielsen:6,critic:16,occur:[16,8],alwai:[15,10,6,12],differenti:[2,5,8,12,13,15],multipl:[16,6],recurion:12,write:2,algo:[15,6],product:14,atan:10,max:[16,6,9],meromorph:2,mai:[0,18,8,12,13,14,16],drastic:11,function_coth:4,harmon:[15,11],is_terminating_seri:14,hyperu:15,practic:12,piecewis:[],explicit:[12,8],is_absolutely_converg:14,inform:[12,3],preced:14,combin:[15,14,8,13],ordinari:[15,14,2],unit_step:17,jacobi_p:12,still:[15,14],"6349639147847361j":0,m_3:11,m_2:11,m_1:11,main:[13,7],zeta_symmetr:8,non:[3,7,10,11,13,16],"float":[15,10,6,3,4],recal:10,initi:[2,18,7,5,8,11,13,14,15,16,17],nation:6,half:[2,11,13],now:16,term:[2,3,5,12,13,15,14],name:[2,4,12,13,15,16],sorted_paramet:14,linspac:[0,10],separ:15,quarter:2,domain:[0,10,3,4,16],replac:15,individu:[16,11],continu:[10,2,8,6],function_sin_integr:6,regge58:11,regge59:11,happen:10,gordan:[],space:11,kummer:15,formula:[7,8,10,11,12,13],correct:[6,4],runtimeerror:[0,10],theori:[6,12,8],carl:12,org:[7,6,10,13,15,17],care:16,frequenc:8,func_chebyshev_u:12,func_chebyshev_t:12,recov:12,turn:7,place:[15,10],view:16,lambda:[16,3,8,4,14],oper:[0,10,3,8,4],wiki:[15,10,6,13,17],helmholtz_equ:15,directli:[4,13,18],arrai:[0,10],function_arccot:0,fast:[12,18],bradshaw:8,ring:[10,12,16],open:16,angular:11,l_2:11,l_3:11,given:[2,18,7,6,10,11,12,9,16],l_1:11,cotang:[0,4],convent:[0,2,12],lambert_w:3,numberfield:10,handbook:[15,6,12,13],proposit:6,includ:[15,10,12,4,7],hue:13,ryzhik:12,copi:[15,8],specifi:16,"17437130002545306j":3,hypergeometr:[],error_fcn:15,holder:10,than:[4,7,6,8,10,11,12,13,15,16,9],png:16,milton:[6,5],"40457132572236e":8,ginacfunct:[0,10,3,8,4],bessel_k:13,bessel_j:[14,13],bessel_i:13,posit:[0,3,4,7,6,10,15],seri:[2,3,6,8,12,13,14,16],pre:11,sai:16,ani:[2,7,10,11,12,13,14,16,17],function_cosh:4,notimplementederror:[10,12],squar:[10,11],functionsignum:17,note:[0,2,18,7,6,10,11,13,15,14],denomin:14,take:[15,10,3,16],golam:17,begin:3,sure:[10,12,7],normal:18,"07089306023517e":6,beta:[15,10],pair:[16,18],fcn:16,latex:[0,3,4,8,10,9,15],subinterv:16,function_arcco:0,later:8,typeset:10,axi:[0,2,3,4,6,10,13],show:[16,6,13],function_conjug:10,gegenbau:12,corner:2,"05597798065761e":11,onli:[0,2,10,11,16,14],explicitli:[10,6,3,7],state:8,parametr:[14,6],black:13,analyt:[10,6,8],variou:[10,13],get:[10,13,16],chichest:12,function_dilog:3,cannot:10,function_real_part:10,gen:[15,16,12],prime:[],lceil:10,"667800782666048e":3,twelv:2,racah:[],xmax:[16,18,7],where:[0,2,7,6,8,11,12,13,14,15,16],function_bessel_i:13,function_bessel_k:13,function_bessel_j:13,maximum:[],infinit:[16,14],label:2,bureau:6,"66182488515423e":13,between:0,"import":[0,2,3,4,5,8,10,12,13,15,14,18],"41407910055520e":11,leopold:12,august:12,parent:[6,8,10,12,13,16],airy_bi_gener:5,inconsist:6,mani:[15,6,8],improp:6,sinh_integr:6,color:[13,5],period:[16,2],pochhamm:12,pole:[10,2],anti:6,cancel:14,typic:[15,6,12],coupl:11,mari:12,mark:0,function_gamma:10,valueerror:[0,10,11,12],eval_formula:12,emphas:2,andrew:7,plot_fourier_series_partial_sum:16,rememb:16,"__eq__":16,those:12,"case":[6,10,11,12,13,14],airy_ai:5,fourier_series_cosine_coeffici:16,program:11,henc:[0,12],"2_f_0":15,author:[2,3,18,7,6,5,8,11,12,13,14,15,16,17],exchang:11,same:[3,6,8,10,12,15],check:[0,3,8,10,12,13,15,16,17],html:[15,10,6,8],knuth:12,document:[3,18,5,6,11,13,15,16],hermit:12,"9376e":8,ehrhardt13:2,nest:14,arccotang:0,fourier_series_partial_sum_filt:16,appropri:10,piecewisepolynomi:16,rationalfield:12,trigonometric_integr:6,stegun:[15,6,12,13,5],rest:10,flavor:12,speed:11,except:[10,6,11],symbolicarithmet:16,momentum:11,real:[0,2,3,4,5,6,7,8,10,11,12,13,15,16,17],psi:10,around:6,hypothesi:6,mod:[12,7],saniti:15,integ:[3,4,7,6,8,10,11,12,13,14,15,16],mpmath:[2,3,5,6,8,10,13,14],either:[10,12,5],output:[0,4,7,6,10,11,12,15,16,18],fulfil:11,brito:11,nonzero:6,definit:[6,8,10,13,15,16,17],"11189776828337e":13,base_r:16,bessel:[],refer:[2,3,7,6,5,8,10,11,12,13,15,17],function_exp:3,power:[3,8],ration:[16,11,4,14],"throw":0,comparison:13,deflat:14,function_arccosh:4,joyner:[2,6,12,13,15,16],chop:2,degre:[14,12],eviatar:[14,2],effici:[14,11,7],elementari:14,invers:[16,2,4],zernike_polynomi:12,your:12,airy_bi:5,willi:[15,12],ymax:13,area:16,mollifi:16,low:12,gen_legendre_p:12,gen_legendre_q:12,gibb:16,tupl:14,procedur:2,willisb:12,tripl:11,possibl:[10,8,7],"default":[7,6,10,11,13,15,16],taylor:13,creat:[15,16,18],certain:3,cbm:[15,6,12,13],heaviside_funct:17,eval_help:9,file:4,again:[0,10,3,8,4],mathematica:4,qqbar:10,field:[4,7,6,10,13,16],binomi:10,geometr:14,you:[3,18,9],ehrhardt:2,polar:15,polylog:3,symbol:[],docstr:[16,13],polynomi:[],arcsin:0,descript:11,laplac:[15,16],potenti:7,mpfr:8,nuovo:11,represent:13,all:[9,7,6,10,11,12,13,14,15,16],elliptic_f:15,sci:11,illustr:10,elliptic_j:15,test_rel:13,scalar:16,follow:[2,7,6,10,11,13,15],auckland:2,sympi:17,articl:[2,3,5,8,12,17],ohanar:7,fourier_series_partial_sum_cesaro:16,introduc:12,mpf:[2,8],liter:15,normalis:15,fals:[7,6,5,10,13,14,16],util:[14,6],mechan:11,fall:12,veri:[16,6],ticket:[0,3,7,6,8,10,11,12,13,14,16,17],"_1f_1":15,maxsymbol:9,list:[16,6,18,14],hyp:14,cosin:[0,16,4],small:6,function_factori:10,function_arctan:0,wigner_3j:11,tee:2,zero:[0,2,6,8,10,11,13,14,16],pass:[10,6,3,16,7],overlin:10,further:11,nonlinear:2,sub:[0,2,3,9,8,10,13],sum:[16,11,13,14],abl:9,delet:18,version:[2,18,7,5,11,12,13,14,15,16,17],fourier_series_sine_coeffici:16,consecut:16,method:[4,7,10,13,16,18],"60424456883448589e":11,full:5,behaviour:16,modular:15,trunk:10,log_integr:6,modifi:[0,13],legend:16,valu:[3,18,7,6,5,10,11,12,13,15,16,9],search:1,which_funct:16,doctest:[18,9],pafnuti:12,maximum_bit:10,via:[0,3,4,8,10,11,12,15,18],primit:[7,5,8,10,13,14,16],viu:8,coercion:[10,13,16],two:[0,2,9,5,11,13,15,16],closed_form:14,formul:13,more:[0,3,4,7,8,11,13,14,9],"77017183772595898875812120063434232634e":8,desir:[10,6,3],canon:[10,13,14],probabilist:12,plot_fft_arg:18,particular:[0,15,13],known:[10,17,13,7],cach:[15,16,8],none:[18,5,8,10,11,12,14,16,4],endpoint:[10,6,8,16],extend_by_zero_to:16,remain:15,nebraska:[15,12],function_sec:0,function_csch:4,share:[16,12],accept:2,minimum:[],function_tanh:4,filter:16,cours:[0,6],awkward:12,rather:6,anoth:[2,3,5,12,13,15],csc:[0,13],divis:7,simpl:[16,2,12,8,14],algebra:[10,6,12,11],critical_point:16,riemann_sum:16,plane:[10,2,13],function_sinh:4,wilei:12,associ:[15,12],sech:4,ambigu:14,caus:0,atan2:[0,10],spheric:[15,11],parametric_plot:6,matrixspac:12,adrien:12,arccoth:4,"0537030780372815e":10,held:10,paper:7,through:[0,13,5],paramet:[0,3,4,10,12,13,15,14,18],orthogonal_poli:12,jacobi_am_f:2,functionairyaisimpl:5,jacobi:[],might:[18,9],scipi:[15,3,5],"return":[0,3,5,6,8,10,12,13,14,15,16],function_cosh_integr:6,fourier_series_partial_sum_hann:16,inria:[15,6],bigger:6,mathematician:13,radian:0,radial:15,p561:12,inverse_jacobi_dn:2,weight:12,unextend:16,function_log_integr:6,koepf:12,expect:[16,9],quantum:11,beyond:14,thick:7,function_tan:0,"41739196365564e":8,robert:8,ftc:16,print:[16,6,13],benjamin:[6,13],airy_bi_simpl:5,reason:[16,11,12],base:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18],put:[15,18],edmonds74:11,exp_integral_e1:6,major:14,upper:[11,12],famou:6,number:[2,3,18,7,6,8,10,11,13,14,15,16,17],function_cos_integr:6,done:[15,16,12,8],complex_plot:[14,13],pablo:16,gpl:[15,12],diffeq:13,differ:[0,8,9],exponenti:[],smoother:16,construct:13,eulerian:6,transcendent:[],scheme:11,jen:11,ellipticpi:15,wigner_9j:11,option:[7,6,10,14,15,16],pari:[15,10,6,8],function_log_gamma:10,ydata:18,sign:[0,11,17],kind:[15,2,12,13],john:[15,12],doubli:2,cyclic:2,remov:16,"77017183772596e":8,str:7,toward:15,tangent_lin:16,real_mpfr:10,comput:[4,7,6,5,8,10,11,12,13,14,15,16],legendre_q:12,legendre_p:12,packag:[15,6,12],karl:18,self:[10,14,16],violat:11,also:[0,7,6,10,11,12,13,17],build:10,jacobian:2,distribut:[15,17],jsn:2,reach:10,most:[0,10,11,12,13,16],charl:12,alpha:[15,5],part:[15,10,6,16],exp:[10,6,3,16],azimuth:15,chebyshev:12,bessel_funct:13,cdf:[10,4],hyper:14,phenomenon:16,function_sqrt:10,function_psi1:10,function_arcsinh:4,tenen:3,clebsch_gordan:11,"_sage_":14,find:14,exp_integral_:6,coerc:[10,11,16],solut:[2,3,5,8,12,13,15,16],"227829789769088e":15,factor:12,"77350269202456e":2,abelian:7,airy_bi_prim:5,express:[0,3,4,6,8,10,12,9,16,17],nativ:10,functionairyaiprim:5,coth:4,arxiv:2,dilog:3,common:[16,13,7],set:[16,12,13],dump:[0,3,7,8,10,9,15],see:[3,4,5,6,10,11,12,13,9],arc:0,sec:[0,10],arg:[10,12,9,13,16],close:[14,6,18],"0839233273386946j":0,arm:10,"6835977616820321802351926205081189876552201e":6,altern:[11,12,17],trapezoid_integral_approxim:16,numer:[0,2,3,5,6,8,10,13,14,15,16],"11507675693612e":8,complementari:15,solv:[15,10,2,3,13],both:[0,15,2,6,14],last:[0,10,11,12],gaunt:[],functionairybiprim:5,spherical_hankel1:15,spherical_hankel2:15,load:[0,3,7,8,10,12,9,15],simpli:[16,3],"1e23":6,residu:8,"141592653589793j":3,zeta:8,coincid:8,vertic:7,due:[16,6,9],calculu:13,sinc:[10,12,16],abs_prec:8,rasch03:11,hurwitz:8,imag:10,coordin:[0,15],understand:2,look:7,"_sympy_":[0,8,10,9,14,17],"while":0,behavior:[3,8,13],error:[0,10,6,11,15],"75787862113718e":13,vol:8,von:16,rif:12,"82415743819925e":13,gimp:16,belong:[15,16],higher:[3,5,6,10,11,13],optim:7,wherea:2,function_exp_integral_e1:6,power_seri:8,user:9,"__add__":16,function_binomi:10,chang:[14,11],recent:[0,10,11,12],lower:[14,6,12,8,11],entri:[6,9],morrow:16,swiss:13,gsl:[15,3],"_do_sqrt":10,airy_funct:5,cut:[0,3,4,6,10,13],rgb:16,theorem:[16,6],input:[0,2,3,4,5,6,7,8,10,11,12,13,15,16,17,18],euler:6,stein:[15,6,18,7],partial_sieve_funct:7,abelian_prime_count:7,bit:[10,6,12,4,13],characterist:15,testo_p:12,formal:14,resolv:[15,8,7],rgbcolor:[16,13],collect:11,princip:[10,3],elliptic_pi:15,encount:0,neumann:13,jacobi_dn:2,simplifi:[0,3,4,6,8,10,11],some:[18,6,8,12,13,15,14,9],back:[10,16],bach:[14,2],global:5,understood:[2,13],unspecifi:13,sampl:18,scale:8,legendre_phi:7,substitut:9,mathemat:[15,6,12,8,13],larg:[6,11],chebyshevpolynomi:12,run:[0,10,3,4,16],builtinfunct:[0,2,3,4,5,6,7,8,9,10,12,13,15,14,17],step:[2,17,7],impos:15,function_imag_part:10,hurwitz_zeta:8,gamma:[10,6,5],univers:[15,11,12],arcsinh:4,within:[10,17],cos_integr:6,ensur:[10,16],updat:11,function_arg:10,triangl:11,plot_fft_ab:18,question:18,"long":[16,6],arithmet:[11,8],evaluationmethod:14,properli:[16,3],delta:[12,17],linestyl:13,line:[0,16,18,7],consist:[0,7,5,8,10,13,14,16],euler_gamma:[10,6,8],similar:12,curv:16,constant:[16,6],dirac_delta:17,doesn:9,repres:[10,6,12,14],arccsch:4,incomplet:[15,10],graham:12,nan:[10,4],draw:7,liberato:11,polynomialr:[15,16,12],william:[15,6,18,7],amplitud:[15,2],longitud:15,svn:10,algorithm:[3,5,6,8,10,11,13,15,14,17],pynac:[12,13],hossain:17,code:[15,6,12],partial:[16,7],ellipf:2,ellipt:[],edu:12,dickman:8,send:12,function_psi2:10,aris:[12,13],desolv:13,wave:16,volum:11,tri:10,"try":[14,6],sphericalharmon:15,pleas:[11,12,5],smaller:18,natur:3,jump:7,fold:5,"7722e":8,odd:[10,11,12,7],index:[15,1,6],compar:[15,6],access:[15,6],indian:8,secant:[0,4],deduc:[10,6,3],functionunitstep:17,len:16,leo:12,let:2,sinh:[14,6,4,13],sine:[0,16,6,4],function_arccsc:0,convert:[3,4,6,10,16,14],convers:[4,10,12,13,15,14,17],branch:[0,2,3,4,6,10],converg:14,rdf:[0,10,2,3,6],implement:[2,3,7,6,5,10,12,14,15,16,17],honor:12,appli:[16,6],approxim:[0,18,6,8,10,16],"_mul_":16,sgn:[16,17],from:[2,3,18,5,6,7,8,10,12,13,14,15,16,4],zip:16,commun:11,chi:6,hudson:6,next:[15,10,12],few:10,butler:16,sort:14,jacobi_cd:2,elliptic_kc:[15,2],hurwitz_zeta_funct:8,alia:[6,3,18],arang:10,chebyshev_u:12,chebyshev_t:12,aand:[15,6,12,13],proof:13,tau:15,gamma1:10,minmax_bas:9,high:[10,8,13],xmin:[16,18,7],onlin:[15,6],tan:[0,15,4],everywher:6,dickman_rho:8,instead:[10,6],narg:[15,12],sin:[0,6,10,13,15,16],delai:[0,9],frac:[10,3],singular:[6,13],heavisid:17,ronald:12,essenti:7,function_lambert_w:3,correspond:[2,3,8],element:[10,12,16],issu:[10,6,11],prime_bound:7,encyclopedia:[15,6],allow:[10,16],wigner:[],move:6,associated_legendre_polynomi:12,bruijn:8,sukhatm:2,csch:4,decai:13,therefor:[2,11],weber:13,greater:[10,12,13],nonneg:[10,6,14],python:[0,10,11,9],bernoulli:13,mention:16,front:16,specialfunct:2,function_cot:0,dirac:17,trac:[0,3,6,8,10,11,12,13,14,16,17],anyth:16,model_exp:3,tran:6,this_f:9,hold_deriv:5,mode:16,combinatori:7,hyperbol:[],special:[],out:15,variabl:[16,9],rel:[0,4,5,6,10,15],hardwar:15,red:5,sine_series_coeffici:16,random_el:6,manipul:[15,14,13,17],function_polylog:[6,3],hankel:[15,13],amath:2,khare:2,transliter:12,releas:[15,12],afterward:10,log:[0,3,6,8,10,12,15,14],iren:[6,5],ultraspher:12,dirichlet:[16,8],napoli:16,cremona:15,david:[2,6,12,13,15,16],length:16,psi1:10,psi2:10,gamma_inc:10,"_sage_var_n":10,"_sage_var_k":10,"_sage_var_i":13,khasuk04:2,tschebyscheff:12,"_sage_var_z":10,"_sage_var_x":[10,13,14],dlmf:6,data:10,licens:[15,12],perfectli:7,system:[11,12,13],wrapper:15,"8783e":8,damath:2,termin:14,siam:11,rsf:16,exp_int:6,arctanh:4,exactli:11,strictli:14,cimento:11,richer:11,dirac_delta_funct:17,plot_fourier_series_partial_sum_filt:16,log_integral_offset:6,exhibit:11,viewer:16,cohen:6,"32938809066403e":8,have:[2,18,6,11,12,16],airy_ai_gener:5,need:[16,8],riemannzeta:8,min:[16,9],diverg:13,accuraci:10,builtin:9,which:[0,3,4,7,6,5,8,10,11,13,14,15,16],singl:[6,3],unless:[0,10,3,4],sfu:[15,6,12,13],realnumb:11,gradshteyn:12,regg:11,segment:16,"class":[0,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18],request:15,function_sin:0,polygamma:10,determin:[16,18,14],fact:[6,12,9],dickmanrho:8,text:16,bring:10,"__rmul__":16,trivial:7,airy_ai_prim:5,locat:16,nth_root:17,should:[16,6,18,13,7],function_beta:10,smallest:6,suppos:10,tchebyshef:12,exp_integr:6,notat:[16,2,12],simplify_ful:[14,13],wigner_6j:11,increas:[10,13],sin_integr:6,"11005908421801e":13,cosine_series_coeffici:16,integr:[],contain:11,shi:6,gerardo:5,nist:6,inverse_jacobi:2,modulo:12,googlecod:10,frame:6,modulu:2,correctli:13,written:[15,12],neither:[12,3],inversejacobi:2,entir:13,otherwis:10,addit:[15,2,11,7],equal:[2,7,8,13,15,14],"88522610630764e":6,etc:[15,16],instanc:[15,3],equat:[2,3,5,8,12,13,15],lazo:5,function_zetaderiv:8,comment:[15,12],realliter:10,respect:[5,10,11,13,16,17],is_posit:0,compon:13,jacobi_sn:[15,2],eint1:6,immedi:[15,10,5],function_zeta:8,"27812176514912e":13,togeth:18,spherical_bessel_i:15,spherical_bessel_j:15,unsuit:11,defin:[],rodrigu:12,dieter:18,realfield:[3,6,8,10,13,15],function_ceil:10,complexfield:[4,6,8,10,13,15],sqrt:[0,3,4,7,10,11,12,13,15,14],handl:[2,3,6,10,13,14],whenev:13,wolfgang:2,phi:15,http:[2,7,6,8,10,12,13,15,17],raymond:15,denot:[15,16,2,6,13],expans:2,tee97:2,jacobi_am:2,"15159692553603e":13,phy:11,pdf:[2,7],edmond:[11,12],pde:16,expand:[2,12],off:7,well:[0,2,10,11,13,16],numerical_integr:[15,3,13],thought:2,vertical_lin:7,exampl:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18],command:[16,7],undefin:[0,14],usual:[0,12,13],distanc:2,less:[15,6,8,7],zaman:8,obtain:[15,12],against:10,liberatodebrito82:11,paul:16,j_6:11,web:8,latex_nam:[12,4],point:[16,8,18],add:[16,3],other:[],match:10,functionairyaigener:5,piec:16,legend_label:16,function_sech:4,press:11,"2nd":15,recurs:[12,8,7],recurr:12,like:17,builtin_f:9,primepi:7,necessari:[10,14],page:[15,1,12],arctan2_ev:0,"92532039161405e21":6,contin:2,"export":13,initial_v:9,proper:16,home:7,function_arcsec:0,librari:[10,6,3,8,13],lead:2,avoid:6,overlap:18,esf:[15,6],estim:8,imaginari:[0,2,4,10,13,15],usag:[10,7],rasch:11,obei:[15,11],although:7,offset:6,effcient:12,about:[3,8,13],actual:12,column:11,convolut:16,automat:[3,4,8,10,15,16],"_object":16,error_funct:10,merf:10,legendr:[15,12,7],spiral:6,cesaro:16,"var":[0,2,3,4,5,6,8,10,12,13,14,15,16,17],"59622057747552e":13,"24053937643003e":6,unexpect:[10,6],is_termin:14,bug:[15,10,12,16],count:[],whether:[14,13,5],smooth:8,"abstract":[12,4],below:[15,16,2,11,13],limit:[15,10,2,6,13],indefinit:16,trapezoid:16,problem:[6,3],sol1_l:3,reciproc:10,evalu:[0,2,3,4,5,6,8,10,11,12,13,14,15,16,9],"int":[10,11,16],arccosec:0,inf:[3,4],"49077798716757e":8,"9888977057628651j":0,detail:[6,12,11,4,13],arctan:[0,10],book:[6,12],bool:[10,14],min_symbol:9,functionairybigener:5,varieti:7,repeat:14,indirectli:[10,18],rule:[16,11],function_ab:10,cosh_integr:6,functionkroneckerdelta:17,invari:11},objtypes:{"0":"py:module","1":"py:class","2":"py:function","3":"py:method","4":"py:attribute"},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","function","Python function"],"3":["py","method","Python method"],"4":["py","attribute","Python attribute"]},filenames:["sage/functions/trig","index","sage/functions/jacobi","sage/functions/log","sage/functions/hyperbolic","sage/functions/airy","sage/functions/exp_integral","sage/functions/prime_pi","sage/functions/transcendental","sage/functions/min_max","sage/functions/other","sage/functions/wigner","sage/functions/orthogonal_polys","sage/functions/bessel","sage/functions/hypergeometric","sage/functions/special","sage/functions/piecewise","sage/functions/generalized","sage/functions/spike_function"],titles:["Trigonometric Functions","Functions","Jacobi Elliptic Functions","Logarithmic functions","Hyperbolic Functions","Airy Functions","Exponential Integrals","Counting Primes","Transcendental Functions","Symbolic Minimum and Maximum","Other functions","Wigner, Clebsch-Gordan, Racah, and Gaunt coefficients","Orthogonal Polynomials","Bessel Functions","Hypergeometric Functions","Special Functions","Piecewise-defined Functions","Generalized Functions","Spike Functions"],objects:{"sage.functions.hypergeometric.Hypergeometric.EvaluationMethods":{is_absolutely_convergent:[14,3,1,""],eliminate_parameters:[14,3,1,""],terms:[14,3,1,""],is_termwise_finite:[14,3,1,""],sorted_parameters:[14,3,1,""],deflated:[14,3,1,""],is_terminating:[14,3,1,""]},"sage.functions.exp_integral":{Function_log_integral_offset:[6,1,1,""],Function_exp_integral_e:[6,1,1,""],Function_cosh_integral:[6,1,1,""],Function_cos_integral:[6,1,1,""],Function_exp_integral_e1:[6,1,1,""],Function_sinh_integral:[6,1,1,""],exponential_integral_1:[6,2,1,""],Function_exp_integral:[6,1,1,""],Function_log_integral:[6,1,1,""],Function_sin_integral:[6,1,1,""]},"sage.functions.prime_pi.PrimePi":{plot:[7,3,1,""]},"sage.functions.spike_function.SpikeFunction":{plot:[18,3,1,""],vector:[18,3,1,""],plot_fft_abs:[18,3,1,""],plot_fft_arg:[18,3,1,""]},"sage.functions.piecewise":{Piecewise:[16,2,1,""],piecewise:[16,2,1,""],PiecewisePolynomial:[16,1,1,""]},"sage.functions.jacobi":{InverseJacobi:[2,1,1,""],JacobiAmplitude:[2,1,1,""],jacobi:[2,2,1,""],inverse_jacobi_f:[2,2,1,""],jacobi_am_f:[2,2,1,""],Jacobi:[2,1,1,""],inverse_jacobi:[2,2,1,""]},"sage.functions.log":{Function_dilog:[3,1,1,""],Function_lambert_w:[3,1,1,""],Function_exp:[3,1,1,""],Function_polylog:[3,1,1,""],Function_log:[3,1,1,""]},"sage.functions.spike_function":{SpikeFunction:[18,1,1,""],spike_function:[18,4,1,""]},"sage.functions.airy":{airy_bi:[5,2,1,""],airy_ai:[5,2,1,""],FunctionAiryBiSimple:[5,1,1,""],FunctionAiryAiGeneral:[5,1,1,""],FunctionAiryBiGeneral:[5,1,1,""],FunctionAiryAiPrime:[5,1,1,""],FunctionAiryBiPrime:[5,1,1,""],FunctionAiryAiSimple:[5,1,1,""]},"sage.functions.orthogonal_polys.Func_chebyshev_U":{eval_algebraic:[12,3,1,""],eval_formula:[12,3,1,""]},"sage.functions.orthogonal_polys.Func_chebyshev_T":{eval_algebraic:[12,3,1,""],eval_formula:[12,3,1,""]},"sage.functions.wigner":{wigner_3j:[11,2,1,""],gaunt:[11,2,1,""],wigner_6j:[11,2,1,""],wigner_9j:[11,2,1,""],racah:[11,2,1,""],clebsch_gordan:[11,2,1,""]},"sage.functions.bessel":{Function_Bessel_I:[13,1,1,""],Function_Bessel_Y:[13,1,1,""],Function_Bessel_K:[13,1,1,""],Function_Bessel_J:[13,1,1,""],Bessel:[13,2,1,""]},"sage.functions.min_max.MinMax_base":{eval_helper:[9,3,1,""]},"sage.functions.hypergeometric":{Hypergeometric:[14,1,1,""],closed_form:[14,2,1,""],rational_param_as_tuple:[14,2,1,""]},"sage.functions.generalized":{FunctionKroneckerDelta:[17,1,1,""],FunctionDiracDelta:[17,1,1,""],FunctionUnitStep:[17,1,1,""],FunctionHeaviside:[17,1,1,""],FunctionSignum:[17,1,1,""]},"sage.functions.hyperbolic":{HyperbolicFunction:[4,1,1,""],Function_arcsech:[4,1,1,""],Function_arctanh:[4,1,1,""],Function_arccosh:[4,1,1,""],Function_arccsch:[4,1,1,""],Function_arcsinh:[4,1,1,""],Function_csch:[4,1,1,""],Function_sech:[4,1,1,""],Function_sinh:[4,1,1,""],Function_cosh:[4,1,1,""],Function_arccoth:[4,1,1,""],Function_coth:[4,1,1,""],Function_tanh:[4,1,1,""]},"sage.functions.hypergeometric.Hypergeometric":{EvaluationMethods:[14,1,1,""]},"sage.functions.transcendental":{DickmanRho:[8,1,1,""],Function_HurwitzZeta:[8,1,1,""],Function_zeta:[8,1,1,""],zeta_symmetric:[8,2,1,""],hurwitz_zeta:[8,2,1,""],Function_zetaderiv:[8,1,1,""]},"sage.functions.other":{Function_floor:[10,1,1,""],psi:[10,2,1,""],Function_abs:[10,1,1,""],Function_arg:[10,1,1,""],Function_sqrt:[10,1,1,""],Function_psi1:[10,1,1,""],Function_erf:[10,1,1,""],sqrt:[10,2,1,""],Function_psi2:[10,1,1,""],Function_gamma:[10,1,1,""],Function_imag_part:[10,1,1,""],Function_log_gamma:[10,1,1,""],Function_ceil:[10,1,1,""],Function_real_part:[10,1,1,""],Function_beta:[10,1,1,""],Function_factorial:[10,1,1,""],Function_binomial:[10,1,1,""],Function_conjugate:[10,1,1,""],gamma:[10,2,1,""],Function_gamma_inc:[10,1,1,""]},"sage.functions.orthogonal_polys":{gegenbauer:[12,2,1,""],laguerre:[12,2,1,""],hermite:[12,2,1,""],legendre_Q:[12,2,1,""],legendre_P:[12,2,1,""],Func_chebyshev_U:[12,1,1,""],OrthogonalPolynomial:[12,1,1,""],ultraspherical:[12,2,1,""],Func_chebyshev_T:[12,1,1,""],ChebyshevPolynomial:[12,1,1,""],jacobi_P:[12,2,1,""],gen_legendre_P:[12,2,1,""],gen_legendre_Q:[12,2,1,""],gen_laguerre:[12,2,1,""]},"sage.functions.orthogonal_polys.OrthogonalPolynomial":{eval_formula:[12,3,1,""]},"sage.functions.min_max":{MinSymbolic:[9,1,1,""],MaxSymbolic:[9,1,1,""],MinMax_base:[9,1,1,""]},"sage.functions.special":{EllipticEU:[15,1,1,""],EllipticKC:[15,1,1,""],SphericalHarmonic:[15,1,1,""],MaximaFunction:[15,1,1,""],elliptic_j:[15,2,1,""],meval:[15,2,1,""],maxima_function:[15,2,1,""],EllipticEC:[15,1,1,""],hypergeometric_U:[15,2,1,""],EllipticE:[15,1,1,""],spherical_hankel1:[15,2,1,""],spherical_hankel2:[15,2,1,""],error_fcn:[15,2,1,""],spherical_bessel_Y:[15,2,1,""],EllipticPi:[15,1,1,""],spherical_bessel_J:[15,2,1,""],EllipticF:[15,1,1,""]},"sage.functions":{prime_pi:[7,0,0,"-"],wigner:[11,0,0,"-"],log:[3,0,0,"-"],hyperbolic:[4,0,0,"-"],piecewise:[16,0,0,"-"],min_max:[9,0,0,"-"],trig:[0,0,0,"-"],hypergeometric:[14,0,0,"-"],exp_integral:[6,0,0,"-"],other:[10,0,0,"-"],orthogonal_polys:[12,0,0,"-"],transcendental:[8,0,0,"-"],spike_function:[18,0,0,"-"],jacobi:[2,0,0,"-"],airy:[5,0,0,"-"],bessel:[13,0,0,"-"],special:[15,0,0,"-"],generalized:[17,0,0,"-"]},"sage.functions.trig":{Function_tan:[0,1,1,""],Function_arctan:[0,1,1,""],Function_csc:[0,1,1,""],Function_sec:[0,1,1,""],Function_arccot:[0,1,1,""],Function_arcsin:[0,1,1,""],Function_sin:[0,1,1,""],Function_arccos:[0,1,1,""],Function_cos:[0,1,1,""],Function_arcsec:[0,1,1,""],Function_arctan2:[0,1,1,""],Function_arccsc:[0,1,1,""],Function_cot:[0,1,1,""]},"sage.functions.prime_pi":{PrimePi:[7,1,1,""],legendre_phi:[7,2,1,""],partial_sieve_function:[7,2,1,""]},"sage.functions.piecewise.PiecewisePolynomial":{fourier_series_partial_sum:[16,3,1,""],domain:[16,3,1,""],base_ring:[16,3,1,""],cosine_series_coefficient:[16,3,1,""],trapezoid_integral_approximation:[16,3,1,""],integral:[16,3,1,""],intervals:[16,3,1,""],end_points:[16,3,1,""],default_variable:[16,3,1,""],convolution:[16,3,1,""],plot:[16,3,1,""],functions:[16,3,1,""],plot_fourier_series_partial_sum_filtered:[16,3,1,""],critical_points:[16,3,1,""],fourier_series_partial_sum_cesaro:[16,3,1,""],which_function:[16,3,1,""],unextend:[16,3,1,""],sine_series_coefficient:[16,3,1,""],fourier_series_partial_sum_hann:[16,3,1,""],tangent_line:[16,3,1,""],riemann_sum:[16,3,1,""],plot_fourier_series_partial_sum:[16,3,1,""],fourier_series_value:[16,3,1,""],derivative:[16,3,1,""],plot_fourier_series_partial_sum_hann:[16,3,1,""],extend_by_zero_to:[16,3,1,""],list:[16,3,1,""],fourier_series_sine_coefficient:[16,3,1,""],plot_fourier_series_partial_sum_cesaro:[16,3,1,""],riemann_sum_integral_approximation:[16,3,1,""],length:[16,3,1,""],trapezoid:[16,3,1,""],fourier_series_partial_sum_filtered:[16,3,1,""],laplace:[16,3,1,""],fourier_series_cosine_coefficient:[16,3,1,""]},"sage.functions.transcendental.DickmanRho":{approximate:[8,3,1,""],power_series:[8,3,1,""]}},titleterms:{wigner:11,orthogon:12,indic:1,clebsch:11,minimum:9,ellipt:2,tabl:1,hyperbol:4,gordan:11,todo:12,special:15,exponenti:6,airi:5,prime:7,transcendent:8,spike:18,jacobi:2,bessel:13,gener:17,"function":[0,1,2,3,4,5,8,10,13,14,15,16,17,18],count:7,symbol:9,coeffici:11,piecewis:16,trigonometr:0,hypergeometr:14,logarithm:3,polynomi:12,maximum:9,gaunt:11,defin:16,racah:11,integr:6,other:10}})12