Draft Forbes Group Website (Build by Nikola). The official site is hosted at:
License: GPL3
ubuntu2004
<?xml version="1.0" encoding="utf-8"?>1<?xml-stylesheet type="text/xsl" href="../assets/xml/rss.xsl" media="all"?><rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:atom="http://www.w3.org/2005/Atom"><channel><title>The Forbes Group (Posts about private_blog)</title><link>http://swan.physics.wsu.edu/forbes/</link><description></description><atom:link href="http://swan.physics.wsu.edu/forbes/categories/cat_private_blog.xml" rel="self" type="application/rss+xml"></atom:link><language>en</language><copyright>Contents © 2023 <a href="mailto:Michael McNeil Forbes <[email protected]>">Michael McNeil Forbes</a> </copyright><lastBuildDate>Wed, 15 Mar 2023 01:12:27 GMT</lastBuildDate><generator>Nikola (getnikola.com)</generator><docs>http://blogs.law.harvard.edu/tech/rss</docs><item><title>Photos and Git Annex</title><link>http://swan.physics.wsu.edu/forbes/private/private_blog/photos-and-git-annex/</link><dc:creator>Michael McNeil Forbes</dc:creator><description><div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">2</div><div class="inner_cell">3<div class="text_cell_render border-box-sizing rendered_html">4<h2 id="Photos-and-Git-Annex">Photos and Git-Annex<a class="anchor-link" href="http://swan.physics.wsu.edu/forbes/private/private_blog/photos-and-git-annex/#Photos-and-Git-Annex">¶</a></h2><p>In this post we discuss using <a href="https://git-annex.branchable.com">git-annex</a> to manage photos.</p>5<p><a href="http://swan.physics.wsu.edu/forbes/private/private_blog/photos-and-git-annex/">Read more…</a> (1 min remaining to read)</p></div></div></div></description><guid>http://swan.physics.wsu.edu/forbes/private/private_blog/photos-and-git-annex/</guid><pubDate>Sun, 08 Jul 2018 06:54:41 GMT</pubDate></item><item><title>Creating a Nikola Theme</title><link>http://swan.physics.wsu.edu/forbes/private/private_blog/creating-a-nikola-theme/</link><dc:creator>Michael McNeil Forbes</dc:creator><description><div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">6</div><div class="inner_cell">7<div class="text_cell_render border-box-sizing rendered_html">8<p><img src="https://html5up.net/uploads/images/massively.jpg" alt="Massively"></p>9<h2 id="Nikola-Themes">Nikola Themes<a class="anchor-link" href="http://swan.physics.wsu.edu/forbes/private/private_blog/creating-a-nikola-theme/#Nikola-Themes">¶</a></h2><p>This posts describes my process of creating a new Nikola theme based on the <a href="https://html5up.net">HTML5 UP</a> template called <a href="https://html5up.net/massively">Massively</a>.</p>10<p><a href="http://swan.physics.wsu.edu/forbes/private/private_blog/creating-a-nikola-theme/">Read more…</a> (19 min remaining to read)</p></div></div></div></description><guid>http://swan.physics.wsu.edu/forbes/private/private_blog/creating-a-nikola-theme/</guid><pubDate>Sun, 25 Mar 2018 15:27:26 GMT</pubDate></item><item><title>Carl Brannen</title><link>http://swan.physics.wsu.edu/forbes/private/private_blog/carl-brannen/</link><dc:creator>Michael McNeil Forbes</dc:creator><description><div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">11</div><div class="inner_cell">12<div class="text_cell_render border-box-sizing rendered_html">13<p>Write your post here.</p>1415</div>16</div>17</div>18<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">19</div><div class="inner_cell">20<div class="text_cell_render border-box-sizing rendered_html">21<h2 id="Pauli-Spin-Matrices">Pauli Spin Matrices<a class="anchor-link" href="http://swan.physics.wsu.edu/forbes/private/private_blog/carl-brannen/#Pauli-Spin-Matrices">¶</a></h2>22</div>23</div>24</div>25<div class="cell border-box-sizing code_cell rendered">26<div class="input">27<div class="prompt input_prompt">In [4]:</div>28<div class="inner_cell">29<div class="input_area">30<div class=" highlight hl-ipython2"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>3132<span class="k">def</span> <span class="nf">com</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">B</span><span class="p">):</span>33<span class="k">return</span> <span class="n">A</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">B</span><span class="p">)</span> <span class="o">-</span> <span class="n">B</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">A</span><span class="p">)</span>34<span class="n">sigma</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span>35<span class="p">[[[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>36<span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">]],</span>37<span class="p">[[</span><span class="mi">0</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="n">j</span><span class="p">],</span>38<span class="p">[</span><span class="mi">1</span><span class="n">j</span><span class="p">,</span> <span class="mi">0</span><span class="p">]],</span>39<span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>40<span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]]])</span>4142<span class="k">assert</span> <span class="n">np</span><span class="o">.</span><span class="n">allclose</span><span class="p">(</span><span class="n">com</span><span class="p">(</span><span class="n">sigma</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">sigma</span><span class="p">[</span><span class="mi">1</span><span class="p">]),</span> <span class="mi">2</span><span class="n">j</span><span class="o">*</span><span class="n">sigma</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>43</pre></div>4445</div>46</div>47</div>4849</div>50<div class="cell border-box-sizing code_cell rendered">51<div class="input">52<div class="prompt input_prompt">In [ ]:</div>53<div class="inner_cell">54<div class="input_area">55<div class=" highlight hl-ipython2"><pre><span></span>56</pre></div>5758</div>59</div>60</div>6162</div></description><guid>http://swan.physics.wsu.edu/forbes/private/private_blog/carl-brannen/</guid><pubDate>Mon, 05 Mar 2018 11:01:38 GMT</pubDate></item><item><title>Irregular Grids</title><link>http://swan.physics.wsu.edu/forbes/private/private_blog/irregular-grids/</link><dc:creator>Michael McNeil Forbes</dc:creator><description><div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">63</div><div class="inner_cell">64<div class="text_cell_render border-box-sizing rendered_html">65<p>Here we look at discretization using irregular grids.</p>66<p><a href="http://swan.physics.wsu.edu/forbes/private/private_blog/irregular-grids/">Read more…</a> (2 min remaining to read)</p></div></div></div></description><guid>http://swan.physics.wsu.edu/forbes/private/private_blog/irregular-grids/</guid><pubDate>Tue, 24 Oct 2017 01:54:01 GMT</pubDate></item><item><title>Parallel Computing with IPython</title><link>http://swan.physics.wsu.edu/forbes/private/private_blog/parallel-computing-with-ipython/</link><dc:creator>Michael McNeil Forbes</dc:creator><description><div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">67</div><div class="inner_cell">68<div class="text_cell_render border-box-sizing rendered_html">69<p>Here we discuss how to use <code>ipyparallel</code> to perform some simple parallel computing tasks.</p>70<p><a href="http://swan.physics.wsu.edu/forbes/private/private_blog/parallel-computing-with-ipython/">Read more…</a> (1 min remaining to read)</p></div></div></div></description><guid>http://swan.physics.wsu.edu/forbes/private/private_blog/parallel-computing-with-ipython/</guid><pubDate>Fri, 20 Oct 2017 23:47:41 GMT</pubDate></item><item><title>Source Code Projects</title><link>http://swan.physics.wsu.edu/forbes/private/private_blog/source-code-projects/</link><dc:creator>Michael McNeil Forbes</dc:creator><description><div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">71</div><div class="inner_cell">72<div class="text_cell_render border-box-sizing rendered_html">73<p><img src="https://upload.wikimedia.org/wikipedia/commons/3/32/Atlassian_Bitbucket_Logo.png" alt="Bitbucket">74This post describes the projects I host at <a href="https://bitbucket.org">Bitbucket</a>. Note that some of this might be useful for you, but I also include in this list private and incomplete projects. If you think you need access to any of these, please contact me: <code>[email protected]</code>.</p>75<p><a href="http://swan.physics.wsu.edu/forbes/private/private_blog/source-code-projects/">Read more…</a> (7 min remaining to read)</p></div></div></div></description><guid>http://swan.physics.wsu.edu/forbes/private/private_blog/source-code-projects/</guid><pubDate>Tue, 12 Sep 2017 17:53:48 GMT</pubDate></item><item><title>ZNG</title><link>http://swan.physics.wsu.edu/forbes/private/private_blog/zng/</link><dc:creator>Michael McNeil Forbes</dc:creator><description><div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">76</div><div class="inner_cell">77<div class="text_cell_render border-box-sizing rendered_html">78<p>Here we describe the the ZNG formalism for extending the GPE to finite temperatures.</p>79<p><a href="http://swan.physics.wsu.edu/forbes/private/private_blog/zng/">Read more…</a> (3 min remaining to read)</p></div></div></div></description><guid>http://swan.physics.wsu.edu/forbes/private/private_blog/zng/</guid><pubDate>Thu, 08 Jun 2017 17:48:55 GMT</pubDate></item><item><title>Beyond GPE</title><link>http://swan.physics.wsu.edu/forbes/private/private_blog/beyond-gpe/</link><dc:creator>Michael McNeil Forbes</dc:creator><description><div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">80</div><div class="inner_cell">81<div class="text_cell_render border-box-sizing rendered_html">82<p>Here we collect various methods for going beyond GPE.</p>83<p><a href="http://swan.physics.wsu.edu/forbes/private/private_blog/beyond-gpe/">Read more…</a> (1 min remaining to read)</p></div></div></div></description><guid>http://swan.physics.wsu.edu/forbes/private/private_blog/beyond-gpe/</guid><pubDate>Wed, 07 Jun 2017 16:07:28 GMT</pubDate></item><item><title>Python Projects</title><link>http://swan.physics.wsu.edu/forbes/private/private_blog/python-projects/</link><dc:creator>Michael McNeil Forbes</dc:creator><description><div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">84</div><div class="inner_cell">85<div class="text_cell_render border-box-sizing rendered_html">86<p>Write your post here.</p>8788</div>89</div>90</div></description><guid>http://swan.physics.wsu.edu/forbes/private/private_blog/python-projects/</guid><pubDate>Mon, 29 May 2017 03:58:12 GMT</pubDate></item><item><title>Parking and Commutation</title><link>http://swan.physics.wsu.edu/forbes/private/private_blog/parking-and-commutation/</link><dc:creator>Michael McNeil Forbes</dc:creator><description><div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">91</div><div class="inner_cell">92<div class="text_cell_render border-box-sizing rendered_html">93<p>The process of driving and parking can be described using the mathematics of non-commutative algebra which gives some interesting insight into the difficulty of parallel parking. This discussion is motivated and follows a similar discussion from William Burke's book Applied Differential Geometry.</p>9495</div>96</div>97</div>98<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">99</div><div class="inner_cell">100<div class="text_cell_render border-box-sizing rendered_html">101<h2 id="Mathematical-Formulation">Mathematical Formulation<a class="anchor-link" href="http://swan.physics.wsu.edu/forbes/private/private_blog/parking-and-commutation/#Mathematical-Formulation">¶</a></h2>102</div>103</div>104</div>105<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">106</div><div class="inner_cell">107<div class="text_cell_render border-box-sizing rendered_html">108<h3 id="Unique-and-Complete">Unique and Complete<a class="anchor-link" href="http://swan.physics.wsu.edu/forbes/private/private_blog/parking-and-commutation/#Unique-and-Complete">¶</a></h3>109</div>110</div>111</div>112<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">113</div><div class="inner_cell">114<div class="text_cell_render border-box-sizing rendered_html">115<p>Consider the motion of a car on a flat plane. To mathematically formulate the problem, we must provide a unique and unambigious characterization of the state of the car. This can be done in a four-dimensional configuration space with the following four quantities:</p>116<ul>117<li>$(x, y)$: The position of the car can be described by two numbers to locate where the car is in the plane. Note: to be precise we must specify which point on the car lies at this position, and the algebra might be simplified if we are careful about the placement. As a guess, we start by taking this to be the midpoint of the front axle of the car. In this way, the point $(x, y)$ will move in the direction of the front wheels when driving.</li>118<li>$\phi$: The orientation of the car. This angle will denote the direction in which the car points.</li>119<li>$\theta$: The orientation of the steering wheels. This will be relative to the car so that $\theta=0$ means the wheels point straight ahead.</li>120</ul>121<p>Stop and think for a moment: is this complete? Can we describe every possible position of a car with a set of these four quantities? The answer is definitely no as the following diagram indicates:</p>122<picture of an upside-down car>123<p>but with an appropriate restriction placed on the possible condition of the car, you should be able to convince yourself that such a choice of four coordinates is indeed sufficient for our purposes. <em>(If we wish to consider the dynamics of the car, we will need additionally the velocity, and angular velocity, but here we shall just consider the geometric motion of the car.)</em></p>124<p>The second question you should ask is: "Is such a characterization unique?" Here again the answer is no: $\theta = 0°$ and $\theta = 360°$ correspond to the same configuration. Thus, we need to restrict our angular variables to lie between $-180° \leq \theta,\phi &lt; 180°$ for example. With such a restriction, our characterization is both unique and complete, and thus a suitable mathematical formulation of the problem.</p>125126</picture></div>127</div>128</div>129<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">130</div><div class="inner_cell">131<div class="text_cell_render border-box-sizing rendered_html">132<h3 id="Units">Units<a class="anchor-link" href="http://swan.physics.wsu.edu/forbes/private/private_blog/parking-and-commutation/#Units">¶</a></h3>133</div>134</div>135</div>136<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">137</div><div class="inner_cell">138<div class="text_cell_render border-box-sizing rendered_html">139<p>To simplify the mathematics, we further restrict our notation so that $x$ and $y$ are specified in meters, while $\theta$ and $\phi$ are specified in radians. In this way, the configuration of the car can be specified by four pure numbers $(x, y, \theta, \phi)$.</p>140141</div>142</div>143</div>144<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">145</div><div class="inner_cell">146<div class="text_cell_render border-box-sizing rendered_html">147<h3 id="Driving">Driving<a class="anchor-link" href="http://swan.physics.wsu.edu/forbes/private/private_blog/parking-and-commutation/#Driving">¶</a></h3>148</div>149</div>150</div>151<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">152</div><div class="inner_cell">153<div class="text_cell_render border-box-sizing rendered_html">154<p>Driving consists of applying two operations to the car which we shall call <code>drive</code> and <code>steer</code>. Mathematically we represent these as operators $\op{D}_s$ and $\op{S}_\theta$ respectively as following:</p>155<ul>156<li>$\op{D}_s$ means drive forward (keeping the steering wheel fixed) for distance $s$.</li>157<li>$\op{S}_\theta$ means rotate the steering wheel through angle $\theta$.</li>158</ul>159160</div>161</div>162</div>163<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">164</div><div class="inner_cell">165<div class="text_cell_render border-box-sizing rendered_html">166<h4 id="Steering">Steering<a class="anchor-link" href="http://swan.physics.wsu.edu/forbes/private/private_blog/parking-and-commutation/#Steering">¶</a></h4>167</div>168</div>169</div>170<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">171</div><div class="inner_cell">172<div class="text_cell_render border-box-sizing rendered_html">173<p>Steering is the easiest operation to analyze. Given a state $(x_1, y_1, \theta_1, \phi_1)$, steering takes this to the state $\op{S}_{\theta}(x_1, y_1, \theta_1, \phi_1) = (x_1, y_1, \theta_1+\theta, \phi_1)$. In words: steering changes the direction of the steering wheel, but does not change the position of orientation of the car. Mathematically this operation is a translation, but as we shall see later, it is convenient to represent these operations as matrices. Thus, we add one extra component to our vectors which is fixed:</p>174$$175\vect{p}_1 = \begin{pmatrix}176x_1\\177y_1\\178\theta_1\\179\phi_1\\1801181\end{pmatrix}182$$<p><em>This same trick is often used in computer graphics to allow both rotations and translations to be represented by matrices</em>. With this concrete representation of configurations as a five-dimensional vector who's last component is always $1$, we can thus represent $\op{S}_{\theta}$ as a matrix:</p>183$$184\vect{p}_2 = \mat{S}_{\theta}\cdot\vect{p}_{1}, \qquad185\begin{pmatrix}186x_1\\y_1\\ \theta_1 + \theta \\ \phi_1\\ 1187\end{pmatrix}188=189\mat{S}_{\theta}190\cdot191\begin{pmatrix}192x_1\\y_1\\ \theta_1 \\ \phi_1\\ 1193\end{pmatrix},\qquad194\mat{S}_{\theta} =195\begin{pmatrix}1961\\197&amp; 1\\198&amp;&amp; 1 &amp;&amp;\theta\\199&amp;&amp;&amp; 1\\200&amp;&amp;&amp;&amp; 1201\end{pmatrix}202$$203</div>204</div>205</div>206<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">207</div><div class="inner_cell">208<div class="text_cell_render border-box-sizing rendered_html">209<h4 id="Motion">Motion<a class="anchor-link" href="http://swan.physics.wsu.edu/forbes/private/private_blog/parking-and-commutation/#Motion">¶</a></h4>210</div>211</div>212</div>213<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">214</div><div class="inner_cell">215<div class="text_cell_render border-box-sizing rendered_html">216<p>Motion of the car is obtained by applying the <code>drive</code> operator, but this is somewhat more difficult to describe. To specify this, we must work out the geometry of the car. In particular, the motion of the car when $\theta \neq 0$ will depend on the length of the car $L$, or more specifically, the distance between the back and front axles. Without loss of generality (w.l.o.g.), we can assume $L=1$m. <em>(To discuss the motion of longer or shorter cars, we can simply change our units so that the numbers $x$ and $y$ specify the position in units of the length $L$).</em></p>217<p>To deduce the behaviour, use two vectors $\vect{f}$ and $\vect{b}$ which point to the center of front and back axles respectively. Cars generally have fixed length, so that $\norm{\vect{f} - \vect{b}} = L$ remains fixed. Now, if the car moves forward, then $\vect{b}$ moves in the direction of $\vect{f} - \vect{b}$ while $\vect{f}$ moves in the direction of the steering wheel.</p>218219</div>220</div>221</div>222<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">223</div><div class="inner_cell">224<div class="text_cell_render border-box-sizing rendered_html">225<h3 id="A-Better-Representation">A Better Representation<a class="anchor-link" href="http://swan.physics.wsu.edu/forbes/private/private_blog/parking-and-commutation/#A-Better-Representation">¶</a></h3>226</div>227</div>228</div>229<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">230</div><div class="inner_cell">231<div class="text_cell_render border-box-sizing rendered_html">232<p>Polar coordinates are extremely useful for representing vectors in the $x$-$y$ plane. In particular, the representation as a complex number $z = x + \I y = re^{\I\phi}$. Here we suggest a more practical (though less intuitive) representation of the problem in terms of the complex number $z$ describing the position of the car, and the phases $e^{\I\theta}$ for the orientation of the car, and $e^{\I\varphi}$ for the orientation of the steering wheel:</p>233$$234\vect{p} =235\begin{pmatrix}236re^{\I\phi}\\237e^{\I\theta}\\238e^{\I\varphi}239\end{pmatrix}240$$<p>We can now work out how the car moves while driving from the following argument. Let $f=z$ be the center of the front axle and $b$ be the center of the back axle. These satisfy the following relationship where $L$ is the length of the axle and $\theta$ is the orientation of the car:</p>241$$242f - b = L e^{\I\theta}.243$$<p>While driving, the length of the car must not change, the front axle $f$ must move in the direction of the wheels $e^{\I(\theta + \varphi)}$ while the back axle $b$ must move towards the front axle $e^{\I\theta}$. The infinitesimal motion of the car thus satisfies:</p>244$$245\d{f} = e^{\I(\theta + \varphi)}\d{s}, \qquad246\d{b} = ae^{\I\theta}\d{s}, \qquad247\d{f}-\d{b} = e^{\I\theta}(e^{\I\varphi}-a)\d{s} = Le^{\I\theta}\I\d{\theta}.248$$<p>We must adjust the coefficient $a$ so that the car does not change length, which is equivalent to the condition that $(e^{\I\varphi}-a)\d{s} = (\cos\varphi-a + \I\sin\varphi)\d{s} = \I L\d{\theta}$. Hence, after equating real and imaginary portions:</p>249$$250a = \cos\varphi, \qquad251\d{\theta} = \d{s}\sin\varphi/L.252$$<p>The second condition tells us how fast the car rotates. We now have the complete infinitesimal forms for steering and driving:</p>253$$254\d{\op{S}_{\alpha}(\vect{p})} = \begin{pmatrix}2550\\2560\\257\I e^{\I\varphi}\\258\end{pmatrix}259\d{\alpha},260\qquad261\d{\op{D}_{s}(\vect{p})} = \begin{pmatrix}262e^{\I(\theta + \varphi)}\\263\frac{\I\sin\varphi}{L}e^{\I\theta}\\2640\\265\end{pmatrix}266\d{s}.267$$268</div>269</div>270</div>271<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">272</div><div class="inner_cell">273<div class="text_cell_render border-box-sizing rendered_html">274<p>In terms of the complex numbers where $z=re^{\I\phi}$ we can write these as derivatives:</p>275$$276\op{s} = \pdiff{}{\varphi}, \qquad277\op{d} = e^{\I(\theta + \varphi)}\pdiff{}{z} + \frac{\sin\varphi}{L}\pdiff{}{\theta}.278$$279</div>280</div>281</div>282<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">283</div><div class="inner_cell">284<div class="text_cell_render border-box-sizing rendered_html">285<p>Now we can compute the commutator of these operators:</p>286$$287[\op{s}, \op{d}]p = \op{s}\left(288e^{\I(\theta+\varphi)}p_{,z} + \frac{\sin\varphi}{L}p_{,\theta}289\right) - \op{d}(p_{,\varphi})\\290= \left(291\I e^{\I(\theta+\varphi)}p_{,z}292+ e^{\I(\theta+\varphi)}p_{,z\varphi}293+ \frac{\cos\varphi}{L}p_{,\theta}294+ \frac{\sin\varphi}{L}p_{,\theta\varphi}295\right) - \left(e^{\I(\theta+\varphi)}p_{,\varphi z}296+ \frac{\sin\varphi}{L}p_{,\varphi \theta})\right)\\297= \I e^{\I(\theta+\varphi)}p_{,z} + \frac{\cos\varphi}{L}p_{,\theta}298= \left(\I e^{\I(\theta+\varphi)}\pdiff{}{z}299+ \frac{\cos\varphi}{L}\pdiff{}{\theta}\right)p.300$$301</div>302</div>303</div>304<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">305</div><div class="inner_cell">306<div class="text_cell_render border-box-sizing rendered_html">307<p>This is a combination of a rotation and a translation which one can decompose into a pure rotation about some point (<strong>Exercise: find the point.</strong>)</p>308309</div>310</div>311</div>312<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">313</div><div class="inner_cell">314<div class="text_cell_render border-box-sizing rendered_html">315<p>We now complete the same procedure using the point $b$ as a reference point.</p>316$$317\d{\op{S}_{\alpha}(\vect{p})} = \begin{pmatrix}3180\\3190\\320\I e^{\I\varphi}\\321\end{pmatrix}322\d{\alpha},323\qquad324\d{\op{D}_{s}(\vect{p})} = \begin{pmatrix}325\cos\varphi e^{\I\theta}\\326\frac{\I\sin\varphi}{L}e^{\I\theta}\\3270\\328\end{pmatrix}329\d{s}.330$$$$331\op{s} = \pdiff{}{\varphi}, \qquad332\op{d} = \cos\varphi e^{\I\theta}\pdiff{}{z} + \frac{\sin\varphi}{L}\pdiff{}{\theta}.333$$$$334[\op{s}, \op{d}]p = \op{s}\left(335\cos\varphi e^{\I\theta}p_{,z} + \frac{\sin\varphi}{L}p_{,\theta}336\right) - \op{d}(p_{,\varphi})\\337= \left(338-\I \sin\varphi e^{\I\theta}p_{,z}339+ \cos\varphi e^{\I\theta}p_{,z\varphi}340+ \frac{\cos\varphi}{L}p_{,\theta}341+ \frac{\sin\varphi}{L}p_{,\theta\varphi}342\right) - \left(\cos\varphi e^{\I\theta}p_{,\varphi z}343+ \frac{\sin\varphi}{L}p_{,\varphi \theta})\right)\\344= -\I \sin \varphi e^{\I\theta}p_{,z} + \frac{\cos\varphi}{L}p_{,\theta}\\345= \left(-\I \sin\varphi e^{\I\theta}\pdiff{}{z}346+ \frac{\cos\varphi}{L}\pdiff{}{\theta}\right)p.347$$<p>In this case, we see that if we execute this commutator about $\varphi = 0$, then we indeed rotate the car about the center of the back axle without any translation.</p>348349</div>350</div>351</div>352<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">353</div><div class="inner_cell">354<div class="text_cell_render border-box-sizing rendered_html">355356</div>357</div>358</div></description><guid>http://swan.physics.wsu.edu/forbes/private/private_blog/parking-and-commutation/</guid><pubDate>Sun, 19 Feb 2017 03:20:06 GMT</pubDate></item></channel></rss>359360