Econometrics/Spring 2017/Linear regression model / Powered by R / Apartment example: dummy variables / R_LMM_dummy_variables.sagews
231 viewsФиктивные переменные
'data.frame': 100 obs. of 10 variables:
$ X : int 1 2 3 4 5 6 7 8 9 10 ...
$ Y : num 15.9 27 21.1 24.5 13.5 22.5 15.5 75.9 15.1 26 ...
$ X1: int 1 3 2 4 1 2 3 4 1 2 ...
$ X2: Factor w/ 4 levels "К","М","П","С": 4 1 4 4 1 1 4 3 1 1 ...
$ X3: num 39 68.4 54.7 90 34.8 48 68.1 132 39 55.5 ...
$ X4: num 20 40.5 28 64 16 29 44.4 89.6 20 35 ...
$ X5: num 8.2 10.7 10.7 15 10.7 8 7.2 11 8.5 8 ...
$ X6: int 0 0 0 0 0 1 0 1 0 0 ...
$ X7: int 1 1 1 0 0 1 0 1 1 1 ...
$ X8: Factor w/ 2 levels "В","Н": 2 2 2 1 2 1 1 2 2 1 ...
(Intercept) | X8.fН | |
---|---|---|
1 | 1 | 1 |
2 | 1 | 1 |
3 | 1 | 1 |
4 | 1 | 0 |
5 | 1 | 1 |
6 | 1 | 0 |
7 | 1 | 0 |
8 | 1 | 1 |
9 | 1 | 1 |
10 | 1 | 0 |
11 | 1 | 0 |
12 | 1 | 0 |
13 | 1 | 1 |
14 | 1 | 0 |
15 | 1 | 1 |
16 | 1 | 1 |
17 | 1 | 0 |
18 | 1 | 1 |
19 | 1 | 1 |
20 | 1 | 1 |
21 | 1 | 0 |
22 | 1 | 0 |
23 | 1 | 1 |
24 | 1 | 1 |
25 | 1 | 1 |
26 | 1 | 0 |
27 | 1 | 0 |
28 | 1 | 0 |
29 | 1 | 1 |
30 | 1 | 1 |
⋮ | ⋮ | ⋮ |
71 | 1 | 1 |
72 | 1 | 0 |
73 | 1 | 0 |
74 | 1 | 0 |
75 | 1 | 1 |
76 | 1 | 1 |
77 | 1 | 1 |
78 | 1 | 0 |
79 | 1 | 0 |
80 | 1 | 1 |
81 | 1 | 0 |
82 | 1 | 0 |
83 | 1 | 0 |
84 | 1 | 1 |
85 | 1 | 1 |
86 | 1 | 1 |
87 | 1 | 0 |
88 | 1 | 0 |
89 | 1 | 0 |
90 | 1 | 1 |
91 | 1 | 1 |
92 | 1 | 1 |
93 | 1 | 0 |
94 | 1 | 0 |
95 | 1 | 0 |
96 | 1 | 1 |
97 | 1 | 1 |
98 | 1 | 1 |
99 | 1 | 1 |
100 | 1 | 0 |
(Intercept) | X2.fМ | X2.fП | X2.fС | |
---|---|---|---|---|
1 | 1 | 0 | 0 | 1 |
2 | 1 | 0 | 0 | 0 |
3 | 1 | 0 | 0 | 1 |
4 | 1 | 0 | 0 | 1 |
5 | 1 | 0 | 0 | 0 |
6 | 1 | 0 | 0 | 0 |
7 | 1 | 0 | 0 | 1 |
8 | 1 | 0 | 1 | 0 |
9 | 1 | 0 | 0 | 0 |
10 | 1 | 0 | 0 | 0 |
11 | 1 | 0 | 1 | 0 |
12 | 1 | 0 | 0 | 0 |
13 | 1 | 0 | 0 | 0 |
14 | 1 | 1 | 0 | 0 |
15 | 1 | 1 | 0 | 0 |
16 | 1 | 0 | 0 | 1 |
17 | 1 | 1 | 0 | 0 |
18 | 1 | 0 | 0 | 0 |
19 | 1 | 0 | 1 | 0 |
20 | 1 | 1 | 0 | 0 |
21 | 1 | 0 | 0 | 1 |
22 | 1 | 0 | 0 | 0 |
23 | 1 | 0 | 1 | 0 |
24 | 1 | 0 | 1 | 0 |
25 | 1 | 0 | 1 | 0 |
26 | 1 | 1 | 0 | 0 |
27 | 1 | 0 | 1 | 0 |
28 | 1 | 0 | 0 | 0 |
29 | 1 | 0 | 0 | 1 |
30 | 1 | 0 | 1 | 0 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
71 | 1 | 0 | 0 | 1 |
72 | 1 | 1 | 0 | 0 |
73 | 1 | 1 | 0 | 0 |
74 | 1 | 0 | 1 | 0 |
75 | 1 | 1 | 0 | 0 |
76 | 1 | 0 | 1 | 0 |
77 | 1 | 0 | 1 | 0 |
78 | 1 | 0 | 0 | 1 |
79 | 1 | 0 | 0 | 1 |
80 | 1 | 0 | 0 | 0 |
81 | 1 | 0 | 1 | 0 |
82 | 1 | 0 | 0 | 1 |
83 | 1 | 0 | 0 | 1 |
84 | 1 | 1 | 0 | 0 |
85 | 1 | 1 | 0 | 0 |
86 | 1 | 0 | 1 | 0 |
87 | 1 | 1 | 0 | 0 |
88 | 1 | 0 | 0 | 1 |
89 | 1 | 0 | 0 | 1 |
90 | 1 | 0 | 1 | 0 |
91 | 1 | 1 | 0 | 0 |
92 | 1 | 0 | 1 | 0 |
93 | 1 | 0 | 0 | 0 |
94 | 1 | 0 | 0 | 1 |
95 | 1 | 0 | 0 | 1 |
96 | 1 | 1 | 0 | 0 |
97 | 1 | 0 | 1 | 0 |
98 | 1 | 1 | 0 | 0 |
99 | 1 | 1 | 0 | 0 |
100 | 1 | 1 | 0 | 0 |
Call:
lm(formula = ap$Y ~ ap$X1 + ap$X3 + ap$X4 + ap$X5 + dummy8[,
2])
Residuals:
Min 1Q Median 3Q Max
-12.1940 -4.0914 0.2285 3.0462 15.8874
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.8049 1.8582 -1.509 0.1345
ap$X1 -1.9545 1.0562 -1.850 0.0674 .
ap$X3 0.6377 0.1201 5.308 7.38e-07 ***
ap$X4 -0.1911 0.1493 -1.280 0.2038
ap$X5 -0.3848 0.1973 -1.951 0.0541 .
dummy8[, 2] 8.2635 1.2797 6.457 4.65e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.633 on 94 degrees of freedom
Multiple R-squared: 0.8406, Adjusted R-squared: 0.8321
F-statistic: 99.13 on 5 and 94 DF, p-value: < 2.2e-16