Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
231 views

Автокорреляция

%r d <- read.table('d.tsv', header=TRUE, sep='\t') d.lm <- lm(Y ~ X2 + X3 + X4 + X5, data=d) yhat <- d.lm$fitted.values u <- d.lm$residuals plot(u)
# тест Дарбина - Уотсона %r library(lmtest) dwtest(d.lm)
Loading required package: zoo Attaching package: ‘zoo’ The following objects are masked from ‘package:base’: as.Date, as.Date.numeric
Durbin-Watson test data: d.lm DW = 1.6368, p-value = 0.1103 alternative hypothesis: true autocorrelation is greater than 0
# процедура Кохрейна - Оркатта %r library(orcutt) cochrane.orcutt(d.lm) # увы, этот пакет здесь не установлен
Error in library(orcutt): there is no package called ‘orcutt’ Traceback: 1. library(orcutt) 2. stop(txt, domain = NA)

Гетероскедастичность

%r # график u^2 от Y plot(d$Y, u^2, xlab="Y", ylab="Residuals") # графики u^2 от X_k for (k in 3:6) { plot(d[,k], u^2, xlab="Regressor", ylab="Residuals") }
# тест Голдфелда - Куандта %r library(lmtest) gqtest(d.lm) # высокое p-значение --> хорошо!
Goldfeld-Quandt test data: d.lm GQ = 0.61065, df1 = 8, df2 = 7, p-value = 0.7482
%r library(car) residualPlots(d.lm)
Test statPr(>|t|)
X2 2.2220.039
X3-0.4830.634
X4 2.0400.056
X5 0.9350.361
Tukey test 0.8400.401