CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download
Views: 17362
%md # Math 152: Intro to Mathematical Software ### 2017-01-30 ### Kiran Kedlaya; University of California, San Diego ### adapted from lectures by William Stein, University of Washington ## **Lecture 9: Symbolic Calculus (part 2)**

Math 152: Intro to Mathematical Software

2017-01-30

Kiran Kedlaya

Symbolic Calculus (part 2)

%md Please fill out the week 4 feedback survey! Thanks. (URL removed)

Topics

  1. finding roots: symbolic, numerical

  2. numerical approximation of a symbolic expression

  3. more about 2d plotting

  4. more about 3d plots

Finding Roots: symbolic

You can use the solve command to solve for zeroes of a function.

x^2+3 = 5
Error in lines 1-1 Traceback (most recent call last): File "/projects/sage/sage-7.5/local/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 976, in execute exec compile(block+'\n', '', 'single') in namespace, locals File "<string>", line 1 SyntaxError: can't assign to operator
x^2 + 3 == 5
x^2 + 3 == 5
eqn = x^2 + 3 == 5 show(eqn)
x2+3=5\displaystyle x^{2} + 3 = 5
eqn.add_to_both_sides(-3)
x^2 == 2
pi == pi
pi == pi
bool(pi == pi)
True
solve(x^4 + 2*x + 3 == 0, x)
[x == -1/2*sqrt(((2*I*sqrt(15) + 2)^(2/3) + 4)/(2*I*sqrt(15) + 2)^(1/3)) - 1/2*sqrt(-(2*I*sqrt(15) + 2)^(1/3) - 4/(2*I*sqrt(15) + 2)^(1/3) + 4/sqrt(((2*I*sqrt(15) + 2)^(2/3) + 4)/(2*I*sqrt(15) + 2)^(1/3))), x == -1/2*sqrt(((2*I*sqrt(15) + 2)^(2/3) + 4)/(2*I*sqrt(15) + 2)^(1/3)) + 1/2*sqrt(-(2*I*sqrt(15) + 2)^(1/3) - 4/(2*I*sqrt(15) + 2)^(1/3) + 4/sqrt(((2*I*sqrt(15) + 2)^(2/3) + 4)/(2*I*sqrt(15) + 2)^(1/3))), x == 1/2*sqrt(((2*I*sqrt(15) + 2)^(2/3) + 4)/(2*I*sqrt(15) + 2)^(1/3)) - 1/2*sqrt(-(2*I*sqrt(15) + 2)^(1/3) - 4/(2*I*sqrt(15) + 2)^(1/3) - 4/sqrt(((2*I*sqrt(15) + 2)^(2/3) + 4)/(2*I*sqrt(15) + 2)^(1/3))), x == 1/2*sqrt(((2*I*sqrt(15) + 2)^(2/3) + 4)/(2*I*sqrt(15) + 2)^(1/3)) + 1/2*sqrt(-(2*I*sqrt(15) + 2)^(1/3) - 4/(2*I*sqrt(15) + 2)^(1/3) - 4/sqrt(((2*I*sqrt(15) + 2)^(2/3) + 4)/(2*I*sqrt(15) + 2)^(1/3)))]
show(solve(x^4 + 2*x + 3 == 0, x)[0])
x=12(2i15+2)23+4(2i15+2)1312(2i15+2)134(2i15+2)13+4(2i15+2)23+4(2i15+2)13\displaystyle x = -\frac{1}{2} \, \sqrt{\frac{{\left(2 i \, \sqrt{15} + 2\right)}^{\frac{2}{3}} + 4}{{\left(2 i \, \sqrt{15} + 2\right)}^{\frac{1}{3}}}} - \frac{1}{2} \, \sqrt{-{\left(2 i \, \sqrt{15} + 2\right)}^{\frac{1}{3}} - \frac{4}{{\left(2 i \, \sqrt{15} + 2\right)}^{\frac{1}{3}}} + \frac{4}{\sqrt{\frac{{\left(2 i \, \sqrt{15} + 2\right)}^{\frac{2}{3}} + 4}{{\left(2 i \, \sqrt{15} + 2\right)}^{\frac{1}{3}}}}}}
solve(sqrt(x) == 2, x)
[x == 4]
solve(sin(x) == 0, x)
[x == 0]
solve(e^(3*x) == 5, x)
[x == log(1/2*I*5^(1/3)*sqrt(3) - 1/2*5^(1/3)), x == log(-1/2*I*5^(1/3)*sqrt(3) - 1/2*5^(1/3)), x == 1/3*log(5)]
v = solve(e^(3*x) == 5, x, solution_dict=True); v
[{x: log(1/2*I*5^(1/3)*sqrt(3) - 1/2*5^(1/3))}, {x: log(-1/2*I*5^(1/3)*sqrt(3) - 1/2*5^(1/3))}, {x: 1/3*log(5)}]
%var x, y solve([x^2 == y^2, x^3 == y^3 + 5], [x,y])
[[x == 1.35720887245841, y == -1.35720887245841], [x == (-0.6786044041487247 + 1.175377306225595*I), y == (0.6786044041487285 - 1.175377306225602*I)], [x == (-0.6786044041487247 - 1.175377306225595*I), y == (0.6786044041487285 + 1.175377306225602*I)]]
g = implicit_plot(x^3 == y^3 + 5, (x, -3, 3), (y,-3,3)) g += implicit_plot(x^2 == y^2, (x, -3, 3), (y,-3,3),color='red') g
show(v[0][x])
log(12i513312513)\displaystyle \log\left(\frac{1}{2} i \cdot 5^{\frac{1}{3}} \sqrt{3} - \frac{1}{2} \cdot 5^{\frac{1}{3}}\right)
(e^(v[0][x]*3)).simplify_full()
5
# or use roots: v = (e^(3*x) - 5).roots() v
[(log(1/2*I*5^(1/3)*sqrt(3) - 1/2*5^(1/3)), 1), (log(-1/2*I*5^(1/3)*sqrt(3) - 1/2*5^(1/3)), 1), (1/3*log(5), 1)]
show(v[0][0])
log(12i513312513)\displaystyle \log\left(\frac{1}{2} i \cdot 5^{\frac{1}{3}} \sqrt{3} - \frac{1}{2} \cdot 5^{\frac{1}{3}}\right)

Finding A SINGLE Root in an interval: numerical

f(x) = e^(3*x) - 5 plot(f, -2, 2, ymax=1)
f.find_root(0, 1)
Error in lines 1-1 Traceback (most recent call last): File "/projects/sage/sage-7.5/local/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 976, in execute exec compile(block+'\n', '', 'single') in namespace, locals File "", line 1, in <module> NameError: name 'f' is not defined

Numerical approximation of a symbolic expression

alpha = log(1/2*I*5^(1/3)*sqrt(3) - 1/2*5^(1/3)) show(alpha)
log(12i513312513)\displaystyle \log\left(\frac{1}{2} i \cdot 5^{\frac{1}{3}} \sqrt{3} - \frac{1}{2} \cdot 5^{\frac{1}{3}}\right)
f = pi/10^30 + pi - e/10^30 - acos(0) f
500000000000000000000000000001/1000000000000000000000000000000*pi - 1/1000000000000000000000000000000*e
numerical_approx(f)
1.57079632679490
numerical_approx(alpha)
0.536479304144700 + 2.09439510239320*I
numerical_approx(alpha, prec=200)
0.53647930414470012486691977774206254650853378475617257397088 + 2.0943951023931954923084289221863352561314462662500705473166*I
numerical_approx(alpha, digits=20)
0.53647930414470012487 + 2.0943951023931954923*I
# This is the number of digits used in computing the result, NOT the number of correct digits in output! numerical_approx(alpha, digits=3)
0.536 + 2.09*I
# Interval arithmetic -- # Every displayed digit except last in the output is definitely right: ComplexIntervalField(20)(alpha)
0.53648? + 2.09440?*I
N is numerical_approx
True
alpha.N()
0.536479304144700 + 2.09439510239320*I
alpha.n()
0.536479304144700 + 2.09439510239320*I
alpha.numerical_approx()
0.536479304144700 + 2.09439510239320*I

More about 2d plots

You can do much more than just plot(function...). E.g.,

  • a point

  • a bunch of points

  • text

  • "line" through a bunch of points

  • polygon

  • ellipse

  • implicit plot

  • contour plot

  • vector field

point((1,2))
point2d((1,2), pointsize=150, color='red')
point([(random(), random()) for i in range(100)])
point([(x,x^2) for x in range(50)])
print r"adlkjf\nlksjdfljs"
adlkjf\nlksjdfljs
print "adlkjf\\lksjdfljs"
adlkjf\lksjdfljs
g = point((1,2), pointsize=300, color='red') g += text(r"Get $\int_0^{\pi} \sin(x) dx$ points!", (1,2), alpha=0.5, fontsize=30, fontweight='bold', color='black', rotation=20, zorder=1) g.show(frame=True, axes=False)
line([(0,0), (1,1), (1,2), (2,0), (3,1)], thickness=3, color='blue')
v = [(0,0), (1,1), (1,2), (2,0), (3,1)] line(v, thickness=3, color='blue', zorder=-1) + points(v, pointsize=200, color='grey', zorder=1)
%var x, y pl = implicit_plot(y^2 + cos(y*e^x) == x^3 - 2*x + 3, (x,-2,2), (y,-3,3))
pl.save('test.pdf')
oo
+Infinity
-oo
-Infinity
show(plot(x^2, -100, 100), ymax=3, ymin=2)