CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download
Views: 17361

Challenge 1 (Answers):

%auto import numpy as np %default_mode python
a = np.arange(4); a.shape
(4,)
a = np.arange(24).reshape(2,3,4) a.shape
(2, 3, 4)
np.arange(1).reshape(1,1,1,1).ndim
4
np.array(['fred']).dtype
dtype('S4')
np.array([]).itemsize
8

** Challenge 2 (Answers): **

np.linspace(0, 1, 10)
array([ 0. , 0.11111111, 0.22222222, 0.33333333, 0.44444444, 0.55555556, 0.66666667, 0.77777778, 0.88888889, 1. ])
v = np.linspace(0,1,1000000) %timeit np.sin(v) %timeit np.array([np.sin(x) for x in v]) %timeit np.array([math.sin(x) for x in v])
25 loops, best of 3: 18.1 ms per loop 5 loops, best of 3: 1.15 s per loop 5 loops, best of 3: 213 ms per loop
1/.018 .213/.018
55.55555555555556 11.833333333333334
# Yep, works fine on any dimensional array. np.sin(np.array([[1,2],[3,4]]))
array([[ 0.84147098, 0.90929743], [ 0.14112001, -0.7568025 ]])

Challenge 5 (Answers):

%timeit np.arange(1000000).sum()
125 loops, best of 3: 1.71 ms per loop
%timeit sum(range(1000000))
25 loops, best of 3: 32.6 ms per loop
32.6/1.71
19.06432748538012
a = np.arange(1000000) a.std() %timeit a.std()
288675.13459466852 125 loops, best of 3: 4.63 ms per loop
import pandas df = pandas.DataFrame(np.arange(1000000)) df.std() %timeit df.std()
0 288675.278932 dtype: float64 5 loops, best of 3: 57.5 ms per loop
v = stats.TimeSeries(range(1000000)) v.standard_deviation() %timeit v.standard_deviation()
288675.27893349814 125 loops, best of 3: 4.97 ms per loop

Challenge 1 (Answers):

%auto import numpy as np %default_mode python
a = np.arange(4); a.shape
(4,)
a = np.arange(24).reshape(2,3,4) a.shape
(2, 3, 4)
np.arange(1).reshape(1,1,1,1).ndim
4
np.array(['fred']).dtype
dtype('S4')
np.array([]).itemsize
8

** Challenge 2 (Answers): **

np.linspace(0, 1, 10)
array([ 0. , 0.11111111, 0.22222222, 0.33333333, 0.44444444, 0.55555556, 0.66666667, 0.77777778, 0.88888889, 1. ])
v = np.linspace(0,1,1000000) %timeit np.sin(v) %timeit np.array([np.sin(x) for x in v]) %timeit np.array([math.sin(x) for x in v])
25 loops, best of 3: 18.1 ms per loop 5 loops, best of 3: 1.15 s per loop 5 loops, best of 3: 213 ms per loop
1/.018 .213/.018
55.55555555555556 11.833333333333334
# Yep, works fine on any dimensional array. np.sin(np.array([[1,2],[3,4]]))
array([[ 0.84147098, 0.90929743], [ 0.14112001, -0.7568025 ]])

Challenge 5 (Answers):

%timeit np.arange(1000000).sum()
125 loops, best of 3: 1.71 ms per loop
%timeit sum(range(1000000))
25 loops, best of 3: 32.6 ms per loop
32.6/1.71
19.06432748538012
a = np.arange(1000000) a.std() %timeit a.std()
288675.13459466852 125 loops, best of 3: 4.63 ms per loop
import pandas df = pandas.DataFrame(np.arange(1000000)) df.std() %timeit df.std()
0 288675.278932 dtype: float64 5 loops, best of 3: 57.5 ms per loop
v = stats.TimeSeries(range(1000000)) v.standard_deviation() %timeit v.standard_deviation()
288675.27893349814 125 loops, best of 3: 4.97 ms per loop