Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 23841
License: APACHE
import tactic.ring data.real.basic

example (x y : ℕ) : x + y = y + x := by ring
example (x y : ℕ) : x + y + y = 2 * y + x := by ring
example (x y : ℕ) : x + id y = y + id x := by ring!
example {α} [comm_ring α] (x y : α) : x + y + y - x = 2 * y := by ring
example (x y : ℚ) : x / 2 + x / 2 = x := by ring
example (x y : ℚ) : (x + y) ^ 3 = x ^ 3 + y ^ 3 + 3 * (x * y ^ 2 + x ^ 2 * y) := by ring
example (x y : ℝ) : (x + y) ^ 3 = x ^ 3 + y ^ 3 + 3 * (x * y ^ 2 + x ^ 2 * y) := by ring
example {α} [comm_semiring α] (x : α) : (x + 1) ^ 6 = (1 + x) ^ 6 := by try_for 15000 {ring}
example (a n s: ℕ) : a * (n - s) = (n - s) * a := by ring

example (x y z : ℚ) (hx : x ≠ 0) (hy : y ≠ 0) (hz : z ≠ 0) :
  x / (y / z) + y ⁻¹ + 1 / (y * -x) = -1/ (x * y) + (x * z + 1) / y :=
begin
  field_simp [hx, hy, hz],
  ring
end

example (a b c d x y : ℚ) (hx : x ≠ 0) (hy : y ≠ 0) :
  a + b / x + c / x^2 + d / x^3 = a + x⁻¹ * (y * b / y + (d / x + c) / x) :=
begin
  field_simp [hx, hy],
  ring
end