CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download
Project: teaching
Views: 66
Image: ubuntu2004
def basis(c): return [prod([(x-c[j])/(c[i]-c[j]) for j in range(len(c)) if j != i]) for i in range(len(c))] def rep(p, c): return matrix([p(x = c[i]) for i in range(len(c))]).T def A(c, d): # matrtix converting from c to d B = basis(c) return matrix([vector(rep(B[i],d)) for i in range(len(d))]).T
%md Change $c$ an $d$ below to determine two basis.

Change cc an dd below to determine two basis.

c = [-2,-1,0,1,2] d = [1,2,3,4,5] Bc = basis(c) Bd = basis(d) A = A(c, d)
str1 = "\\begin{align}" str1 += ' '.join([f"q_{i}^c &= {latex(Bc[i])}={latex(Bc[i].simplify_full())}\\\\" for i in range(len(c))]) str1 += "\\end{align}" html(str1)
q0c=124(x+1)(x1)(x2)x=124x4112x3124x2+112xq1c=16(x+2)(x1)(x2)x=16x4+16x3+23x223xq2c=14(x+2)(x+1)(x1)(x2)=14x454x2+1q3c=16(x+2)(x+1)(x2)x=16x416x3+23x2+23xq4c=124(x+2)(x+1)(x1)x=124x4+112x3124x2112x\begin{align}q_0^c &= \frac{1}{24} \, {\left(x + 1\right)} {\left(x - 1\right)} {\left(x - 2\right)} x=\frac{1}{24} \, x^{4} - \frac{1}{12} \, x^{3} - \frac{1}{24} \, x^{2} + \frac{1}{12} \, x\\ q_1^c &= -\frac{1}{6} \, {\left(x + 2\right)} {\left(x - 1\right)} {\left(x - 2\right)} x=-\frac{1}{6} \, x^{4} + \frac{1}{6} \, x^{3} + \frac{2}{3} \, x^{2} - \frac{2}{3} \, x\\ q_2^c &= \frac{1}{4} \, {\left(x + 2\right)} {\left(x + 1\right)} {\left(x - 1\right)} {\left(x - 2\right)}=\frac{1}{4} \, x^{4} - \frac{5}{4} \, x^{2} + 1\\ q_3^c &= -\frac{1}{6} \, {\left(x + 2\right)} {\left(x + 1\right)} {\left(x - 2\right)} x=-\frac{1}{6} \, x^{4} - \frac{1}{6} \, x^{3} + \frac{2}{3} \, x^{2} + \frac{2}{3} \, x\\ q_4^c &= \frac{1}{24} \, {\left(x + 2\right)} {\left(x + 1\right)} {\left(x - 1\right)} x=\frac{1}{24} \, x^{4} + \frac{1}{12} \, x^{3} - \frac{1}{24} \, x^{2} - \frac{1}{12} \, x\\\end{align}
str2 = "\\begin{align}" str2 += ' '.join([f"q_{i}^d &= {latex(Bd[i])}={latex(Bd[i].simplify_full())}\\\\" for i in range(len(d))]) str2 += "\\end{align}" html(str2)
q0d=124(x2)(x3)(x4)(x5)=124x4712x3+7124x27712x+5q1d=16(x1)(x3)(x4)(x5)=16x4+136x3596x2+1076x10q2d=14(x1)(x2)(x4)(x5)=14x43x3+494x2392x+10q3d=16(x1)(x2)(x3)(x5)=16x4+116x3416x2+616x5q4d=124(x1)(x2)(x3)(x4)=124x4512x3+3524x22512x+1\begin{align}q_0^d &= \frac{1}{24} \, {\left(x - 2\right)} {\left(x - 3\right)} {\left(x - 4\right)} {\left(x - 5\right)}=\frac{1}{24} \, x^{4} - \frac{7}{12} \, x^{3} + \frac{71}{24} \, x^{2} - \frac{77}{12} \, x + 5\\ q_1^d &= -\frac{1}{6} \, {\left(x - 1\right)} {\left(x - 3\right)} {\left(x - 4\right)} {\left(x - 5\right)}=-\frac{1}{6} \, x^{4} + \frac{13}{6} \, x^{3} - \frac{59}{6} \, x^{2} + \frac{107}{6} \, x - 10\\ q_2^d &= \frac{1}{4} \, {\left(x - 1\right)} {\left(x - 2\right)} {\left(x - 4\right)} {\left(x - 5\right)}=\frac{1}{4} \, x^{4} - 3 \, x^{3} + \frac{49}{4} \, x^{2} - \frac{39}{2} \, x + 10\\ q_3^d &= -\frac{1}{6} \, {\left(x - 1\right)} {\left(x - 2\right)} {\left(x - 3\right)} {\left(x - 5\right)}=-\frac{1}{6} \, x^{4} + \frac{11}{6} \, x^{3} - \frac{41}{6} \, x^{2} + \frac{61}{6} \, x - 5\\ q_4^d &= \frac{1}{24} \, {\left(x - 1\right)} {\left(x - 2\right)} {\left(x - 3\right)} {\left(x - 4\right)}=\frac{1}{24} \, x^{4} - \frac{5}{12} \, x^{3} + \frac{35}{24} \, x^{2} - \frac{25}{12} \, x + 1\\\end{align}
p(x) = 1 - 2*x^2 + 4*x^4 html(f"$$[p]_{{\\cal q^c}}={latex(rep(p, c))};\\quad[p]_{{\\cal q^d}}={latex(rep(p, d))}$$")
[p]qc=(5731357);[p]qd=(3573079932451)[p]_{\cal q^c}=\left(\begin{array}{r} 57 \\ 3 \\ 1 \\ 3 \\ 57 \end{array}\right);\quad[p]_{\cal q^d}=\left(\begin{array}{r} 3 \\ 57 \\ 307 \\ 993 \\ 2451 \end{array}\right)
str3 = f"$$A_{{\\cal Q^c,Q^d}}[p]_{{\\cal q^c}} = {latex(A)}{latex(rep(p, c))}={latex(A*matrix(rep(p, c)))}=[p]_{{\\cal q^d}}$$" html(str3)
AQc,Qd[p]qc=(00010000011510105524454015157012610535)(5731357)=(3573079932451)=[p]qdA_{\cal Q^c,Q^d}[p]_{\cal q^c} = \left(\begin{array}{rrrrr} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & -5 & 10 & -10 & 5 \\ 5 & -24 & 45 & -40 & 15 \\ 15 & -70 & 126 & -105 & 35 \end{array}\right)\left(\begin{array}{r} 57 \\ 3 \\ 1 \\ 3 \\ 57 \end{array}\right)=\left(\begin{array}{r} 3 \\ 57 \\ 307 \\ 993 \\ 2451 \end{array}\right)=[p]_{\cal q^d}
n = 4 str4 = f"\\begin{{split}}{latex(Bc[n])}&={latex(Bc[n].simplify_full())}\\\\&={latex(vector(Bd)*A[:,n])}\\\\&={latex((vector(Bd)*A[:,n])[0].simplify_full())}\\end{{split}}" html(str4)
124(x+2)(x+1)(x1)x=124x4+112x3124x2112x=(3524(x1)(x2)(x3)(x4)52(x1)(x2)(x3)(x5)+54(x1)(x2)(x4)(x5)16(x1)(x3)(x4)(x5))=124x4+112x3124x2112x\begin{split}\frac{1}{24} \, {\left(x + 2\right)} {\left(x + 1\right)} {\left(x - 1\right)} x&=\frac{1}{24} \, x^{4} + \frac{1}{12} \, x^{3} - \frac{1}{24} \, x^{2} - \frac{1}{12} \, x\\&=\left(\frac{35}{24} \, {\left(x - 1\right)} {\left(x - 2\right)} {\left(x - 3\right)} {\left(x - 4\right)} - \frac{5}{2} \, {\left(x - 1\right)} {\left(x - 2\right)} {\left(x - 3\right)} {\left(x - 5\right)} + \frac{5}{4} \, {\left(x - 1\right)} {\left(x - 2\right)} {\left(x - 4\right)} {\left(x - 5\right)} - \frac{1}{6} \, {\left(x - 1\right)} {\left(x - 3\right)} {\left(x - 4\right)} {\left(x - 5\right)}\right)\\&=\frac{1}{24} \, x^{4} + \frac{1}{12} \, x^{3} - \frac{1}{24} \, x^{2} - \frac{1}{12} \, x\end{split}
latex(A)
\left(\begin{array}{rrrrr} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & -5 & 10 & -10 & 5 \\ 5 & -24 & 45 & -40 & 15 \\ 15 & -70 & 126 & -105 & 35 \end{array}\right)