Legendre symbol: Dirichlet character modulo 7 of conductor 7 mapping 3 |--> -1
L^2= Dirichlet character modulo 7 of conductor 1 mapping 3 |--> 1
-1/7*sqrt(7)*(2*e^(11/21*I*pi) - 2*e^(3/7*I*pi) - 2*e^(8/21*I*pi) - 2*e^(4/21*I*pi) + 2*e^(1/21*I*pi) + 1)
(2/7*sqrt(7)*cos(10/21*pi) + 2/7*sqrt(7)*cos(3/7*pi) + 2/7*sqrt(7)*cos(8/21*pi) + 2/7*sqrt(7)*cos(4/21*pi) - 2/7*sqrt(7)*cos(1/21*pi) - 1/7*sqrt(7), -2/7*sqrt(7)*sin(10/21*pi) + 2/7*sqrt(7)*sin(3/7*pi) + 2/7*sqrt(7)*sin(8/21*pi) + 2/7*sqrt(7)*sin(4/21*pi) - 2/7*sqrt(7)*sin(1/21*pi))
Numeric values
order= 2 Arg(g(c))= 1.67849944170063e-16 + 1.00000000000000*I
z^4= 0.999999999999999 - 6.71399776680251e-16*I
2 Pi/Arg = 4.00000000000000 4
**************************************************************
Prime p= 3 p-1= 2 has 2 divisors:
(None, [1, 2])
**************************************************************
Prime p= 5 p-1= 2^2 has 3 divisors:
(None, [1, 2, 4])
**************************************************************
Prime p= 7 p-1= 2 * 3 has 4 divisors:
(None, [1, 2, 3, 6])
**************************************************************
Prime p= 11 p-1= 2 * 5 has 4 divisors:
(None, [1, 2, 5, 10])
**************************************************************
Prime p= 13 p-1= 2^2 * 3 has 6 divisors:
(None, [1, 2, 3, 4, 6, 12])
**************************************************************
Prime p= 17 p-1= 2^4 has 5 divisors:
(None, [1, 2, 4, 8, 16])
**************************************************************
Prime p= 19 p-1= 2 * 3^2 has 6 divisors:
(None, [1, 2, 3, 6, 9, 18])
**************************************************************
Prime p= 23 p-1= 2 * 11 has 4 divisors:
(None, [1, 2, 11, 22])
**************************************************************
Prime p= 29 p-1= 2^2 * 7 has 6 divisors:
(None, [1, 2, 4, 7, 14, 28])
**************************************************************
Prime p= 31 p-1= 2 * 3 * 5 has 8 divisors:
(None, [1, 2, 3, 5, 6, 10, 15, 30])
**************************************************************
Prime p= 37 p-1= 2^2 * 3^2 has 9 divisors:
(None, [1, 2, 3, 4, 6, 9, 12, 18, 36])
**************************************************************
Prime p= 41 p-1= 2^3 * 5 has 8 divisors:
(None, [1, 2, 4, 5, 8, 10, 20, 40])
**************************************************************
Prime p= 43 p-1= 2 * 3 * 7 has 8 divisors:
(None, [1, 2, 3, 6, 7, 14, 21, 42])
**************************************************************
Prime p= 47 p-1= 2 * 23 has 4 divisors:
(None, [1, 2, 23, 46])
**************************************************************
Prime p= 53 p-1= 2^2 * 13 has 6 divisors:
(None, [1, 2, 4, 13, 26, 52])
**************************************************************
Prime p= 59 p-1= 2 * 29 has 4 divisors:
(None, [1, 2, 29, 58])
**************************************************************
Prime p= 61 p-1= 2^2 * 3 * 5 has 12 divisors:
(None, [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60])
**************************************************************
Prime p= 67 p-1= 2 * 3 * 11 has 8 divisors:
(None, [1, 2, 3, 6, 11, 22, 33, 66])
**************************************************************
Prime p= 71 p-1= 2 * 5 * 7 has 8 divisors:
(None, [1, 2, 5, 7, 10, 14, 35, 70])
**************************************************************
Prime p= 73 p-1= 2^3 * 3^2 has 12 divisors:
(None, [1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72])
**************************************************************
Prime p= 79 p-1= 2 * 3 * 13 has 8 divisors:
(None, [1, 2, 3, 6, 13, 26, 39, 78])
**************************************************************
Prime p= 83 p-1= 2 * 41 has 4 divisors:
(None, [1, 2, 41, 82])
**************************************************************