Group of Dirichlet characters modulo 7 with values in Cyclotomic Field of order 6 and degree 2
Dirichlet character modulo 7 of conductor 7 mapping 3 |--> zeta6
Dirichlet character modulo 7 of conductor 7 mapping 3 |--> zeta6 - 1
2*zeta6 + 1
p= 3
Group of Dirichlet characters modulo 3 with values in Cyclotomic Field of order 2 and degree 1
Dirichlet character modulo 3 of conductor 1 mapping 2 |--> 1
Dirichlet character modulo 3 of conductor 3 mapping 2 |--> -1
-1
1
1
Group of Dirichlet characters of modulus 19 over Cyclotomic Field of order 18 and degree 6
Dirichlet character modulo 19 of conductor 1 mapping 2 |--> 1
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^2
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^3
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^4
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^5
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^3 - 1
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^4 - zeta18
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^5 - zeta18^2
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -1
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^2
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^3
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^4
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^5
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^3 + 1
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^4 + zeta18
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^5 + zeta18^2
Dirichlet character modulo 19 of conductor 1 mapping 2 |--> 1
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^2
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^3
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^4
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^5
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^3 - 1
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^4 - zeta18
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^5 - zeta18^2
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -1
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^2
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^3
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^4
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^5
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^3 + 1
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^4 + zeta18
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^5 + zeta18^2
2 9
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -1
char of order: 2
J(c,c)= 1
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> zeta18^3 - 1
ord(c)= 3 J(c,c)= -3*zeta18^3 + 5
Dirichlet character modulo 19 of conductor 19 mapping 2 |--> -zeta18^3 + 1
1 1 1
27