t=3/4# Given equationsf(x,y)=0.10*x-(.1/10000)*x**2-(.1/10000)*t*x*y# Hardwoodg(x,y)=.25*y-(.25/6000)*y**2-(.25/6000)*t*x*y# Softwood# Streamline plotstream=streamline_plot((f(x,y),g(x,y)),(x,0,15000),(y,0,10000))# Finding where the function quals 0equil=solve([f(x,y)==0,g(x,y)==0],x,y)eqpts=[[round(i.rhs(),2)foriineq]foreqinequil]# Getting rid of not possible valueeqpts.pop()# Points on grapheqplot=list_plot(eqpts,size=30,color='red')display(stream+eqplot)table(eqpts)
Out[3]:
In [4]:
# Loop through each equilibrium pointforeqptineqpts:x_val=eqpt[0]y_val=eqpt[1]# Create a zoomed-in streamplot around the equilibrium pointstreams_zoom=streamline_plot((f(x,y),g(x,y)),(x,x_val-1000,x_val+1000),(y,y_val-1000,y_val+1000),color='gray')# Put the equilibrium point on the grapheqplot_zoom=point(eqpt,size=30,color='purple')# Display the streamplot and equilibrium point for this eqptdisplay(streams_zoom+eqplot_zoom)
Out[4]:
d) If you were to add some hard woods into a the mature softwood it would change to mature hard wood. You can tell this because the point for mature softwood is a saddle.