Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563671 views
1
<?xml version="1.0" encoding="UTF-8"?>
2
3
<!-- This is an automatically generated file. -->
4
<Chapter Label="Chapter_Serre_Quotients">
5
<Heading>Serre Quotients</Heading>
6
7
Serre quotients are implemented using generalized morphisms. A Serre quotient category
8
is the quotient of an abelian category A by a thick subcategory C. The objects of the quotient
9
are the objects from A, the morphisms are a limit construction. In the implementation
10
those morphisms are modeled by generalized morphisms, and therefore there are,
11
like in the generalized morphism case, three types of Serre quotients.
12
<Section Label="Chapter_Serre_Quotients_Section_General_operations">
13
<Heading>General operations</Heading>
14
15
As in the generalized morphism case, the generic constructors depend on the
16
generalized morphism standard. Please note that for implementations the specialized
17
constructors should be used.
18
<ManSection>
19
<Filt Arg="arg" Name="IsSerreQuotientCategoryObject" Label="for IsCapCategoryObject"/>
20
<Returns><C>true</C> or <C>false</C>
21
</Returns>
22
<Description>
23
The category of objects in the category of Serre quotients.
24
For actual objects this needs to be specialized.
25
</Description>
26
</ManSection>
27
28
29
<ManSection>
30
<Filt Arg="arg" Name="IsSerreQuotientCategoryMorphism" Label="for IsCapCategoryMorphism"/>
31
<Returns><C>true</C> or <C>false</C>
32
</Returns>
33
<Description>
34
The category of morphisms in the category of Serre quotients.
35
For actual morphisms this needs to be specialized.
36
</Description>
37
</ManSection>
38
39
40
<ManSection Label="AutoDoc_generated_group1">
41
<Oper Arg="A,func[,name]" Name="SerreQuotientCategory" Label="for IsCapCategory, IsFunction, IsString"/>
42
<Returns>a CAP category
43
</Returns>
44
<Description>
45
Creates a Serre quotient category <A>S</A> with name <A>name</A> out of an Abelian category <A>A</A>.
46
If <A>name</A> is not given, a generic name is constructed out of the name of <A>A</A>.
47
The argument <A>func</A> must be a unary function on the objects of <A>A</A> deciding the membership in
48
the thick subcategory C mentioned above.
49
</Description>
50
</ManSection>
51
52
53
<ManSection>
54
<Oper Arg="A/C, M" Name="AsSerreQuotientCategoryObject" Label="for IsCapCategory, IsCapCategoryObject"/>
55
<Returns>an object
56
</Returns>
57
<Description>
58
Given a Serre quotient category <A>A/C</A> and an object <A>M</A> in <A>A</A>,
59
this constructor returns the corresponding object in the Serre quotient category.
60
</Description>
61
</ManSection>
62
63
64
<ManSection>
65
<Oper Arg="A/C, phi" Name="SerreQuotientCategoryMorphism" Label="for IsCapCategory, IsGeneralizedMorphism"/>
66
<Returns>a morphism
67
</Returns>
68
<Description>
69
Given a Serre quotient category <A>A/C</A> and a generalized morphism <A>phi</A> in
70
the generalized morphism category <A>A/C</A> is modeled upon,
71
this constructor returns the corresponding morphism in the Serre quotient category.
72
</Description>
73
</ManSection>
74
75
76
<ManSection>
77
<Oper Arg="A/C, iota, phi, pi" Name="SerreQuotientCategoryMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism"/>
78
<Returns>a morphism
79
</Returns>
80
<Description>
81
Given a Serre quotient category <A>A/C</A> and three morphisms <Math>\iota: M' \rightarrow M</Math>,
82
<Math>\phi: M' \rightarrow N'</Math> and <Math>\pi: N \rightarrow N'</Math> this operation contructs a
83
morphism in the Serre quotient category.
84
</Description>
85
</ManSection>
86
87
88
<ManSection>
89
<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>
90
<Returns>a morphism
91
</Returns>
92
<Description>
93
Given a Serre quotient category <A>A/C</A> and two morphisms of the form <Math>\alpha: X \rightarrow M</Math>
94
and <Math>\beta: X \rightarrow N</Math> or <Math>\alpha: M \rightarrow X</Math> and <Math>\beta: N \rightarrow X</Math>,
95
this operation constructs the corresponding morphism in the Serre quotient category.
96
This operation is only implemented if <A>A/C</A> is
97
modeled upon a span generalized morphism category in the first option or upon a cospan
98
category in the second.
99
</Description>
100
</ManSection>
101
102
103
<ManSection>
104
<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryMorphismWithSourceAid" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>
105
<Returns>a morphism
106
</Returns>
107
<Description>
108
Given a Serre quotient category <A>A/C</A> and two morphisms <Math>\alpha: M \rightarrow X</Math>
109
and <Math>\beta: X \rightarrow N</Math>
110
this operation constructs the corresponding morphism in the Serre quotient category.
111
</Description>
112
</ManSection>
113
114
115
<ManSection>
116
<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryMorphismWithRangeAid" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>
117
<Returns>a morphism
118
</Returns>
119
<Description>
120
Given a Serre quotient category <A>A/C</A> and two morphisms <Math>\alpha: X \rightarrow M</Math>
121
and <Math>\beta: X \rightarrow N</Math>
122
this operation constructs the corresponding morphism in the Serre quotient category.
123
</Description>
124
</ManSection>
125
126
127
<ManSection>
128
<Oper Arg="A/C, phi" Name="AsSerreQuotientCategoryMorphism" Label="for IsCapCategory, IsCapCategoryMorphism"/>
129
<Returns>a morphism
130
</Returns>
131
<Description>
132
Given a Serre quotient category <A>A/C</A> and a morphism <A>phi</A> in <A>A</A>,
133
this constructor returns the corresponding morphism in the Serre quotient category.
134
</Description>
135
</ManSection>
136
137
138
<ManSection>
139
<Attr Arg="C" Name="SubcategoryMembershipTestFunctionForSerreQuotient" Label="for IsCapCategory"/>
140
<Returns>a function
141
</Returns>
142
<Description>
143
When a Serre quotient category is created, a membership function for
144
the subcategory is given. This attribute stores and returns this function
145
</Description>
146
</ManSection>
147
148
149
<ManSection>
150
<Attr Arg="A/C" Name="UnderlyingHonestCategory" Label="for IsCapCategory"/>
151
<Returns>a category
152
</Returns>
153
<Description>
154
For a Serre quotient category <A>A/C</A> this attribute returns the category <A>A</A>.
155
</Description>
156
</ManSection>
157
158
159
<ManSection>
160
<Attr Arg="A/C" Name="UnderlyingGeneralizedMorphismCategory" Label="for IsCapCategory"/>
161
<Returns>a category
162
</Returns>
163
<Description>
164
For a Serre quotient category <A>A/C</A> this attribute returns generalized morphism category the quotient is modelled upon.
165
</Description>
166
</ManSection>
167
168
169
<ManSection>
170
<Attr Arg="M" Name="UnderlyingGeneralizedObject" Label="for IsSerreQuotientCategoryObject"/>
171
<Returns>an object
172
</Returns>
173
<Description>
174
For an object <A>M</A> in the Serre quotient category A/C this attribute returns the
175
corresponding object in the generalized morphism category the quotient is modelled upon.
176
</Description>
177
</ManSection>
178
179
180
<ManSection>
181
<Attr Arg="M" Name="UnderlyingHonestObject" Label="for IsSerreQuotientCategoryObject"/>
182
<Returns>an object
183
</Returns>
184
<Description>
185
For an object <A>M</A> in the Serre quotient category A/C this attribute returns the
186
corresponding object in <A>A</A>.
187
</Description>
188
</ManSection>
189
190
191
<ManSection>
192
<Attr Arg="phi" Name="UnderlyingGeneralizedMorphism" Label="for IsSerreQuotientCategoryMorphism"/>
193
<Returns>a morphism
194
</Returns>
195
<Description>
196
For a morphism <A>phi</A> in the Serre quotient category A/C this attribute returns the
197
corresponding generalized morphism in the generalized morphism category the quotient is modelled upon.
198
</Description>
199
</ManSection>
200
201
202
<ManSection>
203
<Attr Arg="A/C" Name="CanonicalProjection" Label="for IsCapCategory"/>
204
<Returns>a functor
205
</Returns>
206
<Description>
207
Given a Serre quotient category <A>A/C</A>, this operation returns the canonical projection functor
208
<Math> A \rightarrow A/C </Math>.
209
</Description>
210
</ManSection>
211
212
213
</Section>
214
215
216
<Section Label="Chapter_Serre_Quotients_Section_Serre_quotients_by_cospans">
217
<Heading>Serre quotients by cospans</Heading>
218
219
<ManSection Label="AutoDoc_generated_group2">
220
<Oper Arg="A,func[,name]" Name="SerreQuotientCategoryByCospans" Label="for IsCapCategory, IsFunction, IsString"/>
221
<Returns>a CAP category
222
</Returns>
223
<Description>
224
Creates a Serre quotient category S with name <A>name</A> out of an Abelian category <A>A</A>.
225
The Serre quotient category will be modeled upon the generalized morphisms by cospans category of <A>A</A>
226
If <A>name</A> is not given, a generic name is constructed out of the name of <A>A</A>.
227
The argument <A>func</A> must be a unary function on the objects of <A>A</A> deciding the membership in
228
the thick subcategory C mentioned above.
229
</Description>
230
</ManSection>
231
232
233
<ManSection>
234
<Oper Arg="A/C, M" Name="AsSerreQuotientCategoryByCospansObject" Label="for IsCapCategory, IsCapCategoryObject"/>
235
<Returns>an object
236
</Returns>
237
<Description>
238
Given a Serre quotient category <A>A/C</A> modeled by cospans and an object <A>M</A> in <A>A</A>,
239
this constructor returns the corresponding object in the Serre quotient category.
240
</Description>
241
</ManSection>
242
243
244
<ManSection>
245
<Oper Arg="A/C, phi" Name="SerreQuotientCategoryByCospansMorphism" Label="for IsCapCategory, IsGeneralizedMorphismByCospan"/>
246
<Returns>a morphism
247
</Returns>
248
<Description>
249
Given a Serre quotient category <A>A/C</A> modeled by cospans and a generalized morphism <A>phi</A> in
250
the generalized morphism category <A>A/C</A> is modeled upon,
251
this constructor returns the corresponding morphism in the Serre quotient category.
252
</Description>
253
</ManSection>
254
255
256
<ManSection>
257
<Oper Arg="A/C, iota, phi, pi" Name="SerreQuotientCategoryByCospansMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism"/>
258
<Returns>a morphism
259
</Returns>
260
<Description>
261
Given a Serre quotient category <A>A/C</A> modeled by cospans and three morphisms <Math>\iota: M' \rightarrow M</Math>,
262
<Math>\phi: M' \rightarrow N'</Math> and <Math>\pi: N \rightarrow N'</Math> this operation contructs a
263
morphism in the Serre quotient category.
264
</Description>
265
</ManSection>
266
267
268
<ManSection>
269
<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryByCospansMorphismWithSourceAid" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>
270
<Returns>a morphism
271
</Returns>
272
<Description>
273
Given a Serre quotient category <A>A/C</A> modeled by cospans and two morphisms <Math>\alpha: M \rightarrow X</Math>
274
and <Math>\beta: X \rightarrow N</Math>
275
this operation constructs the corresponding morphism in the Serre quotient category.
276
</Description>
277
</ManSection>
278
279
280
<ManSection>
281
<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryByCospansMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>
282
<Returns>a morphism
283
</Returns>
284
<Description>
285
Given a Serre quotient category <A>A/C</A> modeled by cospans and two morphisms <Math>\alpha: X \rightarrow M</Math>
286
and <Math>\beta: X \rightarrow N</Math>
287
this operation constructs the corresponding morphism in the Serre quotient category.
288
</Description>
289
</ManSection>
290
291
292
<ManSection>
293
<Oper Arg="A/C, phi" Name="AsSerreQuotientCategoryByCospansMorphism" Label="for IsCapCategory, IsCapCategoryMorphism"/>
294
<Returns>a morphism
295
</Returns>
296
<Description>
297
Given a Serre quotient category <A>A/C</A> modeled by cospans and a morphism <A>phi</A> in <A>A</A>,
298
this constructor returns the corresponding morphism in the Serre quotient category.
299
</Description>
300
</ManSection>
301
302
303
</Section>
304
305
306
<Section Label="Chapter_Serre_Quotients_Section_Serre_Quotients_by_Spans">
307
<Heading>Serre Quotients by Spans</Heading>
308
309
<ManSection Label="AutoDoc_generated_group3">
310
<Oper Arg="A,func[,name]" Name="SerreQuotientCategoryBySpans" Label="for IsCapCategory, IsFunction, IsString"/>
311
<Returns>a CAP category
312
</Returns>
313
<Description>
314
Creates a Serre quotient category S with name <A>name</A> out of an Abelian category <A>A</A>.
315
The Serre quotient category will be modeled upon the generalized morphisms by spans category of <A>A</A>
316
If <A>name</A> is not given, a generic name is constructed out of the name of <A>A</A>.
317
The argument <A>func</A> must be a unary function on the objects of <A>A</A> deciding the membership in
318
the thick subcategory C mentioned above.
319
</Description>
320
</ManSection>
321
322
323
<ManSection>
324
<Oper Arg="A/C, M" Name="AsSerreQuotientCategoryBySpansObject" Label="for IsCapCategory, IsCapCategoryObject"/>
325
<Returns>an object
326
</Returns>
327
<Description>
328
Given a Serre quotient category <A>A/C</A> modeled by spans and an object <A>M</A> in <A>A</A>,
329
this constructor returns the corresponding object in the Serre quotient category.
330
</Description>
331
</ManSection>
332
333
334
<ManSection>
335
<Oper Arg="A/C, phi" Name="SerreQuotientCategoryBySpansMorphism" Label="for IsCapCategory, IsGeneralizedMorphismBySpan"/>
336
<Returns>a morphism
337
</Returns>
338
<Description>
339
Given a Serre quotient category <A>A/C</A> modeled by spans and a generalized morphism <A>phi</A> in
340
the generalized morphism category <A>A/C</A> is modeled upon,
341
this constructor returns the corresponding morphism in the Serre quotient category.
342
</Description>
343
</ManSection>
344
345
346
<ManSection>
347
<Oper Arg="A/C, iota, phi, pi" Name="SerreQuotientCategoryBySpansMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism"/>
348
<Returns>a morphism
349
</Returns>
350
<Description>
351
Given a Serre quotient category <A>A/C</A> modeled by spans and three morphisms <Math>\iota: M' \rightarrow M</Math>,
352
<Math>\phi: M' \rightarrow N'</Math> and <Math>\pi: N \rightarrow N'</Math> this operation contructs a
353
morphism in the Serre quotient category.
354
</Description>
355
</ManSection>
356
357
358
<ManSection>
359
<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryBySpansMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>
360
<Returns>a morphism
361
</Returns>
362
<Description>
363
Given a Serre quotient category <A>A/C</A> modeled by spans and two morphisms <Math>\alpha: M \rightarrow X</Math>
364
and <Math>\beta: X \rightarrow N</Math>
365
this operation constructs the corresponding morphism in the Serre quotient category.
366
</Description>
367
</ManSection>
368
369
370
<ManSection>
371
<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryBySpansMorphismWithRangeAid" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>
372
<Returns>a morphism
373
</Returns>
374
<Description>
375
Given a Serre quotient category <A>A/C</A> modeled by spans and two morphisms <Math>\alpha: X \rightarrow M</Math>
376
and <Math>\beta: X \rightarrow N</Math>
377
this operation constructs the corresponding morphism in the Serre quotient category.
378
</Description>
379
</ManSection>
380
381
382
<ManSection>
383
<Oper Arg="A/C, phi" Name="AsSerreQuotientCategoryBySpansMorphism" Label="for IsCapCategory, IsCapCategoryMorphism"/>
384
<Returns>a morphism
385
</Returns>
386
<Description>
387
Given a Serre quotient category <A>A/C</A> modeled by spans and a morphism <A>phi</A> in <A>A</A>,
388
this constructor returns the corresponding morphism in the Serre quotient category.
389
</Description>
390
</ManSection>
391
392
393
</Section>
394
395
396
<Section Label="Chapter_Serre_Quotients_Section_Serre_Quotients_modeled_by_three_arrows">
397
<Heading>Serre Quotients modeled by three arrows</Heading>
398
399
<ManSection Label="AutoDoc_generated_group4">
400
<Oper Arg="A,func[,name]" Name="SerreQuotientCategoryByThreeArrows" Label="for IsCapCategory, IsFunction, IsString"/>
401
<Returns>a CAP category
402
</Returns>
403
<Description>
404
Creates a Serre quotient category S with name <A>name</A> out of an Abelian category <A>A</A>.
405
The Serre quotient category will be modeled upon the generalized morphisms by three arrows category of <A>A</A>
406
If <A>name</A> is not given, a generic name is constructed out of the name of <A>A</A>.
407
The argument <A>func</A> must be a unary function on the objects of <A>A</A> deciding the membership in
408
the thick subcategory C mentioned above.
409
</Description>
410
</ManSection>
411
412
413
<ManSection>
414
<Oper Arg="A/C, M" Name="AsSerreQuotientCategoryByThreeArrowsObject" Label="for IsCapCategory, IsCapCategoryObject"/>
415
<Returns>an object
416
</Returns>
417
<Description>
418
Given a Serre quotient category <A>A/C</A> modeled by three arrows and an object <A>M</A> in <A>A</A>,
419
this constructor returns the corresponding object in the Serre quotient category.
420
</Description>
421
</ManSection>
422
423
424
<ManSection>
425
<Oper Arg="A/C, phi" Name="SerreQuotientCategoryByThreeArrowsMorphism" Label="for IsCapCategory, IsGeneralizedMorphismByThreeArrows"/>
426
<Returns>a morphism
427
</Returns>
428
<Description>
429
Given a Serre quotient category <A>A/C</A> modeled by three arrows and a generalized morphism <A>phi</A> in
430
the generalized morphism category <A>A/C</A> is modeled upon,
431
this constructor returns the corresponding morphism in the Serre quotient category.
432
</Description>
433
</ManSection>
434
435
436
<ManSection>
437
<Oper Arg="A/C, iota, phi, pi" Name="SerreQuotientCategoryByThreeArrowsMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism"/>
438
<Returns>a morphism
439
</Returns>
440
<Description>
441
Given a Serre quotient category <A>A/C</A> modeled by three arrows and three morphisms <Math>\iota: M' \rightarrow M</Math>,
442
<Math>\phi: M' \rightarrow N'</Math> and <Math>\pi: N \rightarrow N'</Math> this operation contructs a
443
morphism in the Serre quotient category.
444
</Description>
445
</ManSection>
446
447
448
<ManSection>
449
<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryByThreeArrowsMorphismWithSourceAid" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>
450
<Returns>a morphism
451
</Returns>
452
<Description>
453
Given a Serre quotient category <A>A/C</A> modeled by three arrows and two morphisms <Math>\alpha: M \rightarrow X</Math>
454
and <Math>\beta: X \rightarrow N</Math>
455
this operation constructs the corresponding morphism in the Serre quotient category.
456
</Description>
457
</ManSection>
458
459
460
<ManSection>
461
<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryByThreeArrowsMorphismWithRangeAid" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>
462
<Returns>a morphism
463
</Returns>
464
<Description>
465
Given a Serre quotient category <A>A/C</A> modeled by three arrows and two morphisms <Math>\alpha: X \rightarrow M</Math>
466
and <Math>\beta: X \rightarrow N</Math>
467
this operation constructs the corresponding morphism in the Serre quotient category.
468
</Description>
469
</ManSection>
470
471
472
<ManSection>
473
<Oper Arg="A/C, phi" Name="AsSerreQuotientCategoryByThreeArrowsMorphism" Label="for IsCapCategory, IsCapCategoryMorphism"/>
474
<Returns>a morphism
475
</Returns>
476
<Description>
477
Given a Serre quotient category <A>A/C</A> modeled by three arrows and a morphism <A>phi</A> in <A>A</A>,
478
this constructor returns the corresponding morphism in the Serre quotient category.
479
</Description>
480
</ManSection>
481
482
483
</Section>
484
485
486
</Chapter>
487
488
489