GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
<?xml version="1.0" encoding="UTF-8"?>12<!-- This is an automatically generated file. -->3<Chapter Label="Chapter_Serre_Quotients">4<Heading>Serre Quotients</Heading>56Serre quotients are implemented using generalized morphisms. A Serre quotient category7is the quotient of an abelian category A by a thick subcategory C. The objects of the quotient8are the objects from A, the morphisms are a limit construction. In the implementation9those morphisms are modeled by generalized morphisms, and therefore there are,10like in the generalized morphism case, three types of Serre quotients.11<Section Label="Chapter_Serre_Quotients_Section_General_operations">12<Heading>General operations</Heading>1314As in the generalized morphism case, the generic constructors depend on the15generalized morphism standard. Please note that for implementations the specialized16constructors should be used.17<ManSection>18<Filt Arg="arg" Name="IsSerreQuotientCategoryObject" Label="for IsCapCategoryObject"/>19<Returns><C>true</C> or <C>false</C>20</Returns>21<Description>22The category of objects in the category of Serre quotients.23For actual objects this needs to be specialized.24</Description>25</ManSection>262728<ManSection>29<Filt Arg="arg" Name="IsSerreQuotientCategoryMorphism" Label="for IsCapCategoryMorphism"/>30<Returns><C>true</C> or <C>false</C>31</Returns>32<Description>33The category of morphisms in the category of Serre quotients.34For actual morphisms this needs to be specialized.35</Description>36</ManSection>373839<ManSection Label="AutoDoc_generated_group1">40<Oper Arg="A,func[,name]" Name="SerreQuotientCategory" Label="for IsCapCategory, IsFunction, IsString"/>41<Returns>a CAP category42</Returns>43<Description>44Creates a Serre quotient category <A>S</A> with name <A>name</A> out of an Abelian category <A>A</A>.45If <A>name</A> is not given, a generic name is constructed out of the name of <A>A</A>.46The argument <A>func</A> must be a unary function on the objects of <A>A</A> deciding the membership in47the thick subcategory C mentioned above.48</Description>49</ManSection>505152<ManSection>53<Oper Arg="A/C, M" Name="AsSerreQuotientCategoryObject" Label="for IsCapCategory, IsCapCategoryObject"/>54<Returns>an object55</Returns>56<Description>57Given a Serre quotient category <A>A/C</A> and an object <A>M</A> in <A>A</A>,58this constructor returns the corresponding object in the Serre quotient category.59</Description>60</ManSection>616263<ManSection>64<Oper Arg="A/C, phi" Name="SerreQuotientCategoryMorphism" Label="for IsCapCategory, IsGeneralizedMorphism"/>65<Returns>a morphism66</Returns>67<Description>68Given a Serre quotient category <A>A/C</A> and a generalized morphism <A>phi</A> in69the generalized morphism category <A>A/C</A> is modeled upon,70this constructor returns the corresponding morphism in the Serre quotient category.71</Description>72</ManSection>737475<ManSection>76<Oper Arg="A/C, iota, phi, pi" Name="SerreQuotientCategoryMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism"/>77<Returns>a morphism78</Returns>79<Description>80Given a Serre quotient category <A>A/C</A> and three morphisms <Math>\iota: M' \rightarrow M</Math>,81<Math>\phi: M' \rightarrow N'</Math> and <Math>\pi: N \rightarrow N'</Math> this operation contructs a82morphism in the Serre quotient category.83</Description>84</ManSection>858687<ManSection>88<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>89<Returns>a morphism90</Returns>91<Description>92Given a Serre quotient category <A>A/C</A> and two morphisms of the form <Math>\alpha: X \rightarrow M</Math>93and <Math>\beta: X \rightarrow N</Math> or <Math>\alpha: M \rightarrow X</Math> and <Math>\beta: N \rightarrow X</Math>,94this operation constructs the corresponding morphism in the Serre quotient category.95This operation is only implemented if <A>A/C</A> is96modeled upon a span generalized morphism category in the first option or upon a cospan97category in the second.98</Description>99</ManSection>100101102<ManSection>103<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryMorphismWithSourceAid" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>104<Returns>a morphism105</Returns>106<Description>107Given a Serre quotient category <A>A/C</A> and two morphisms <Math>\alpha: M \rightarrow X</Math>108and <Math>\beta: X \rightarrow N</Math>109this operation constructs the corresponding morphism in the Serre quotient category.110</Description>111</ManSection>112113114<ManSection>115<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryMorphismWithRangeAid" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>116<Returns>a morphism117</Returns>118<Description>119Given a Serre quotient category <A>A/C</A> and two morphisms <Math>\alpha: X \rightarrow M</Math>120and <Math>\beta: X \rightarrow N</Math>121this operation constructs the corresponding morphism in the Serre quotient category.122</Description>123</ManSection>124125126<ManSection>127<Oper Arg="A/C, phi" Name="AsSerreQuotientCategoryMorphism" Label="for IsCapCategory, IsCapCategoryMorphism"/>128<Returns>a morphism129</Returns>130<Description>131Given a Serre quotient category <A>A/C</A> and a morphism <A>phi</A> in <A>A</A>,132this constructor returns the corresponding morphism in the Serre quotient category.133</Description>134</ManSection>135136137<ManSection>138<Attr Arg="C" Name="SubcategoryMembershipTestFunctionForSerreQuotient" Label="for IsCapCategory"/>139<Returns>a function140</Returns>141<Description>142When a Serre quotient category is created, a membership function for143the subcategory is given. This attribute stores and returns this function144</Description>145</ManSection>146147148<ManSection>149<Attr Arg="A/C" Name="UnderlyingHonestCategory" Label="for IsCapCategory"/>150<Returns>a category151</Returns>152<Description>153For a Serre quotient category <A>A/C</A> this attribute returns the category <A>A</A>.154</Description>155</ManSection>156157158<ManSection>159<Attr Arg="A/C" Name="UnderlyingGeneralizedMorphismCategory" Label="for IsCapCategory"/>160<Returns>a category161</Returns>162<Description>163For a Serre quotient category <A>A/C</A> this attribute returns generalized morphism category the quotient is modelled upon.164</Description>165</ManSection>166167168<ManSection>169<Attr Arg="M" Name="UnderlyingGeneralizedObject" Label="for IsSerreQuotientCategoryObject"/>170<Returns>an object171</Returns>172<Description>173For an object <A>M</A> in the Serre quotient category A/C this attribute returns the174corresponding object in the generalized morphism category the quotient is modelled upon.175</Description>176</ManSection>177178179<ManSection>180<Attr Arg="M" Name="UnderlyingHonestObject" Label="for IsSerreQuotientCategoryObject"/>181<Returns>an object182</Returns>183<Description>184For an object <A>M</A> in the Serre quotient category A/C this attribute returns the185corresponding object in <A>A</A>.186</Description>187</ManSection>188189190<ManSection>191<Attr Arg="phi" Name="UnderlyingGeneralizedMorphism" Label="for IsSerreQuotientCategoryMorphism"/>192<Returns>a morphism193</Returns>194<Description>195For a morphism <A>phi</A> in the Serre quotient category A/C this attribute returns the196corresponding generalized morphism in the generalized morphism category the quotient is modelled upon.197</Description>198</ManSection>199200201<ManSection>202<Attr Arg="A/C" Name="CanonicalProjection" Label="for IsCapCategory"/>203<Returns>a functor204</Returns>205<Description>206Given a Serre quotient category <A>A/C</A>, this operation returns the canonical projection functor207<Math> A \rightarrow A/C </Math>.208</Description>209</ManSection>210211212</Section>213214215<Section Label="Chapter_Serre_Quotients_Section_Serre_quotients_by_cospans">216<Heading>Serre quotients by cospans</Heading>217218<ManSection Label="AutoDoc_generated_group2">219<Oper Arg="A,func[,name]" Name="SerreQuotientCategoryByCospans" Label="for IsCapCategory, IsFunction, IsString"/>220<Returns>a CAP category221</Returns>222<Description>223Creates a Serre quotient category S with name <A>name</A> out of an Abelian category <A>A</A>.224The Serre quotient category will be modeled upon the generalized morphisms by cospans category of <A>A</A>225If <A>name</A> is not given, a generic name is constructed out of the name of <A>A</A>.226The argument <A>func</A> must be a unary function on the objects of <A>A</A> deciding the membership in227the thick subcategory C mentioned above.228</Description>229</ManSection>230231232<ManSection>233<Oper Arg="A/C, M" Name="AsSerreQuotientCategoryByCospansObject" Label="for IsCapCategory, IsCapCategoryObject"/>234<Returns>an object235</Returns>236<Description>237Given a Serre quotient category <A>A/C</A> modeled by cospans and an object <A>M</A> in <A>A</A>,238this constructor returns the corresponding object in the Serre quotient category.239</Description>240</ManSection>241242243<ManSection>244<Oper Arg="A/C, phi" Name="SerreQuotientCategoryByCospansMorphism" Label="for IsCapCategory, IsGeneralizedMorphismByCospan"/>245<Returns>a morphism246</Returns>247<Description>248Given a Serre quotient category <A>A/C</A> modeled by cospans and a generalized morphism <A>phi</A> in249the generalized morphism category <A>A/C</A> is modeled upon,250this constructor returns the corresponding morphism in the Serre quotient category.251</Description>252</ManSection>253254255<ManSection>256<Oper Arg="A/C, iota, phi, pi" Name="SerreQuotientCategoryByCospansMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism"/>257<Returns>a morphism258</Returns>259<Description>260Given a Serre quotient category <A>A/C</A> modeled by cospans and three morphisms <Math>\iota: M' \rightarrow M</Math>,261<Math>\phi: M' \rightarrow N'</Math> and <Math>\pi: N \rightarrow N'</Math> this operation contructs a262morphism in the Serre quotient category.263</Description>264</ManSection>265266267<ManSection>268<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryByCospansMorphismWithSourceAid" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>269<Returns>a morphism270</Returns>271<Description>272Given a Serre quotient category <A>A/C</A> modeled by cospans and two morphisms <Math>\alpha: M \rightarrow X</Math>273and <Math>\beta: X \rightarrow N</Math>274this operation constructs the corresponding morphism in the Serre quotient category.275</Description>276</ManSection>277278279<ManSection>280<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryByCospansMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>281<Returns>a morphism282</Returns>283<Description>284Given a Serre quotient category <A>A/C</A> modeled by cospans and two morphisms <Math>\alpha: X \rightarrow M</Math>285and <Math>\beta: X \rightarrow N</Math>286this operation constructs the corresponding morphism in the Serre quotient category.287</Description>288</ManSection>289290291<ManSection>292<Oper Arg="A/C, phi" Name="AsSerreQuotientCategoryByCospansMorphism" Label="for IsCapCategory, IsCapCategoryMorphism"/>293<Returns>a morphism294</Returns>295<Description>296Given a Serre quotient category <A>A/C</A> modeled by cospans and a morphism <A>phi</A> in <A>A</A>,297this constructor returns the corresponding morphism in the Serre quotient category.298</Description>299</ManSection>300301302</Section>303304305<Section Label="Chapter_Serre_Quotients_Section_Serre_Quotients_by_Spans">306<Heading>Serre Quotients by Spans</Heading>307308<ManSection Label="AutoDoc_generated_group3">309<Oper Arg="A,func[,name]" Name="SerreQuotientCategoryBySpans" Label="for IsCapCategory, IsFunction, IsString"/>310<Returns>a CAP category311</Returns>312<Description>313Creates a Serre quotient category S with name <A>name</A> out of an Abelian category <A>A</A>.314The Serre quotient category will be modeled upon the generalized morphisms by spans category of <A>A</A>315If <A>name</A> is not given, a generic name is constructed out of the name of <A>A</A>.316The argument <A>func</A> must be a unary function on the objects of <A>A</A> deciding the membership in317the thick subcategory C mentioned above.318</Description>319</ManSection>320321322<ManSection>323<Oper Arg="A/C, M" Name="AsSerreQuotientCategoryBySpansObject" Label="for IsCapCategory, IsCapCategoryObject"/>324<Returns>an object325</Returns>326<Description>327Given a Serre quotient category <A>A/C</A> modeled by spans and an object <A>M</A> in <A>A</A>,328this constructor returns the corresponding object in the Serre quotient category.329</Description>330</ManSection>331332333<ManSection>334<Oper Arg="A/C, phi" Name="SerreQuotientCategoryBySpansMorphism" Label="for IsCapCategory, IsGeneralizedMorphismBySpan"/>335<Returns>a morphism336</Returns>337<Description>338Given a Serre quotient category <A>A/C</A> modeled by spans and a generalized morphism <A>phi</A> in339the generalized morphism category <A>A/C</A> is modeled upon,340this constructor returns the corresponding morphism in the Serre quotient category.341</Description>342</ManSection>343344345<ManSection>346<Oper Arg="A/C, iota, phi, pi" Name="SerreQuotientCategoryBySpansMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism"/>347<Returns>a morphism348</Returns>349<Description>350Given a Serre quotient category <A>A/C</A> modeled by spans and three morphisms <Math>\iota: M' \rightarrow M</Math>,351<Math>\phi: M' \rightarrow N'</Math> and <Math>\pi: N \rightarrow N'</Math> this operation contructs a352morphism in the Serre quotient category.353</Description>354</ManSection>355356357<ManSection>358<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryBySpansMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>359<Returns>a morphism360</Returns>361<Description>362Given a Serre quotient category <A>A/C</A> modeled by spans and two morphisms <Math>\alpha: M \rightarrow X</Math>363and <Math>\beta: X \rightarrow N</Math>364this operation constructs the corresponding morphism in the Serre quotient category.365</Description>366</ManSection>367368369<ManSection>370<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryBySpansMorphismWithRangeAid" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>371<Returns>a morphism372</Returns>373<Description>374Given a Serre quotient category <A>A/C</A> modeled by spans and two morphisms <Math>\alpha: X \rightarrow M</Math>375and <Math>\beta: X \rightarrow N</Math>376this operation constructs the corresponding morphism in the Serre quotient category.377</Description>378</ManSection>379380381<ManSection>382<Oper Arg="A/C, phi" Name="AsSerreQuotientCategoryBySpansMorphism" Label="for IsCapCategory, IsCapCategoryMorphism"/>383<Returns>a morphism384</Returns>385<Description>386Given a Serre quotient category <A>A/C</A> modeled by spans and a morphism <A>phi</A> in <A>A</A>,387this constructor returns the corresponding morphism in the Serre quotient category.388</Description>389</ManSection>390391392</Section>393394395<Section Label="Chapter_Serre_Quotients_Section_Serre_Quotients_modeled_by_three_arrows">396<Heading>Serre Quotients modeled by three arrows</Heading>397398<ManSection Label="AutoDoc_generated_group4">399<Oper Arg="A,func[,name]" Name="SerreQuotientCategoryByThreeArrows" Label="for IsCapCategory, IsFunction, IsString"/>400<Returns>a CAP category401</Returns>402<Description>403Creates a Serre quotient category S with name <A>name</A> out of an Abelian category <A>A</A>.404The Serre quotient category will be modeled upon the generalized morphisms by three arrows category of <A>A</A>405If <A>name</A> is not given, a generic name is constructed out of the name of <A>A</A>.406The argument <A>func</A> must be a unary function on the objects of <A>A</A> deciding the membership in407the thick subcategory C mentioned above.408</Description>409</ManSection>410411412<ManSection>413<Oper Arg="A/C, M" Name="AsSerreQuotientCategoryByThreeArrowsObject" Label="for IsCapCategory, IsCapCategoryObject"/>414<Returns>an object415</Returns>416<Description>417Given a Serre quotient category <A>A/C</A> modeled by three arrows and an object <A>M</A> in <A>A</A>,418this constructor returns the corresponding object in the Serre quotient category.419</Description>420</ManSection>421422423<ManSection>424<Oper Arg="A/C, phi" Name="SerreQuotientCategoryByThreeArrowsMorphism" Label="for IsCapCategory, IsGeneralizedMorphismByThreeArrows"/>425<Returns>a morphism426</Returns>427<Description>428Given a Serre quotient category <A>A/C</A> modeled by three arrows and a generalized morphism <A>phi</A> in429the generalized morphism category <A>A/C</A> is modeled upon,430this constructor returns the corresponding morphism in the Serre quotient category.431</Description>432</ManSection>433434435<ManSection>436<Oper Arg="A/C, iota, phi, pi" Name="SerreQuotientCategoryByThreeArrowsMorphism" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism"/>437<Returns>a morphism438</Returns>439<Description>440Given a Serre quotient category <A>A/C</A> modeled by three arrows and three morphisms <Math>\iota: M' \rightarrow M</Math>,441<Math>\phi: M' \rightarrow N'</Math> and <Math>\pi: N \rightarrow N'</Math> this operation contructs a442morphism in the Serre quotient category.443</Description>444</ManSection>445446447<ManSection>448<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryByThreeArrowsMorphismWithSourceAid" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>449<Returns>a morphism450</Returns>451<Description>452Given a Serre quotient category <A>A/C</A> modeled by three arrows and two morphisms <Math>\alpha: M \rightarrow X</Math>453and <Math>\beta: X \rightarrow N</Math>454this operation constructs the corresponding morphism in the Serre quotient category.455</Description>456</ManSection>457458459<ManSection>460<Oper Arg="A/C, alpha, beta" Name="SerreQuotientCategoryByThreeArrowsMorphismWithRangeAid" Label="for IsCapCategory, IsCapCategoryMorphism, IsCapCategoryMorphism"/>461<Returns>a morphism462</Returns>463<Description>464Given a Serre quotient category <A>A/C</A> modeled by three arrows and two morphisms <Math>\alpha: X \rightarrow M</Math>465and <Math>\beta: X \rightarrow N</Math>466this operation constructs the corresponding morphism in the Serre quotient category.467</Description>468</ManSection>469470471<ManSection>472<Oper Arg="A/C, phi" Name="AsSerreQuotientCategoryByThreeArrowsMorphism" Label="for IsCapCategory, IsCapCategoryMorphism"/>473<Returns>a morphism474</Returns>475<Description>476Given a Serre quotient category <A>A/C</A> modeled by three arrows and a morphism <A>phi</A> in <A>A</A>,477this constructor returns the corresponding morphism in the Serre quotient category.478</Description>479</ManSection>480481482</Section>483484485</Chapter>486487488489