GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
1[1X7 [33X[0;0YSerre Quotients[133X[101X23[33X[0;0YSerre quotients are implemented using generalized morphisms. A Serre4quotient category is the quotient of an abelian category A by a thick5subcategory C. The objects of the quotient are the objects from A, the6morphisms are a limit construction. In the implementation those morphisms7are modeled by generalized morphisms, and therefore there are, like in the8generalized morphism case, three types of Serre quotients.[133X91011[1X7.1 [33X[0;0YGeneral operations[133X[101X1213[33X[0;0YAs in the generalized morphism case, the generic constructors depend on the14generalized morphism standard. Please note that for implementations the15specialized constructors should be used.[133X1617[1X7.1-1 IsSerreQuotientCategoryObject[101X1819[29X[2XIsSerreQuotientCategoryObject[102X( [3Xarg[103X ) [32X filter20[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2122[33X[0;0YThe category of objects in the category of Serre quotients. For actual23objects this needs to be specialized.[133X2425[1X7.1-2 IsSerreQuotientCategoryMorphism[101X2627[29X[2XIsSerreQuotientCategoryMorphism[102X( [3Xarg[103X ) [32X filter28[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2930[33X[0;0YThe category of morphisms in the category of Serre quotients. For actual31morphisms this needs to be specialized.[133X3233[1X7.1-3 SerreQuotientCategory[101X3435[29X[2XSerreQuotientCategory[102X( [3XA[103X, [3Xfunc[103X[, [3Xname[103X] ) [32X operation36[6XReturns:[106X [33X[0;10Ya CAP category[133X3738[33X[0;0YCreates a Serre quotient category [3XS[103X with name [3Xname[103X out of an Abelian39category [3XA[103X. If [3Xname[103X is not given, a generic name is constructed out of the40name of [3XA[103X. The argument [3Xfunc[103X must be a unary function on the objects of [3XA[103X41deciding the membership in the thick subcategory C mentioned above.[133X4243[1X7.1-4 AsSerreQuotientCategoryObject[101X4445[29X[2XAsSerreQuotientCategoryObject[102X( [3XA/C[103X, [3XM[103X ) [32X operation46[6XReturns:[106X [33X[0;10Yan object[133X4748[33X[0;0YGiven a Serre quotient category [3XA/C[103X and an object [3XM[103X in [3XA[103X, this constructor49returns the corresponding object in the Serre quotient category.[133X5051[1X7.1-5 SerreQuotientCategoryMorphism[101X5253[29X[2XSerreQuotientCategoryMorphism[102X( [3XA/C[103X, [3Xphi[103X ) [32X operation54[6XReturns:[106X [33X[0;10Ya morphism[133X5556[33X[0;0YGiven a Serre quotient category [3XA/C[103X and a generalized morphism [3Xphi[103X in the57generalized morphism category [3XA/C[103X is modeled upon, this constructor returns58the corresponding morphism in the Serre quotient category.[133X5960[1X7.1-6 SerreQuotientCategoryMorphism[101X6162[29X[2XSerreQuotientCategoryMorphism[102X( [3XA/C[103X, [3Xiota[103X, [3Xphi[103X, [3Xpi[103X ) [32X operation63[6XReturns:[106X [33X[0;10Ya morphism[133X6465[33X[0;0YGiven a Serre quotient category [3XA/C[103X and three morphisms [23X\iota: M'66\rightarrow M[123X, [23X\phi: M' \rightarrow N'[123X and [23X\pi: N \rightarrow N'[123X this67operation contructs a morphism in the Serre quotient category.[133X6869[1X7.1-7 SerreQuotientCategoryMorphism[101X7071[29X[2XSerreQuotientCategoryMorphism[102X( [3XA/C[103X, [3Xalpha[103X, [3Xbeta[103X ) [32X operation72[6XReturns:[106X [33X[0;10Ya morphism[133X7374[33X[0;0YGiven a Serre quotient category [3XA/C[103X and two morphisms of the form [23X\alpha: X75\rightarrow M[123X and [23X\beta: X \rightarrow N[123X or [23X\alpha: M \rightarrow X[123X and76[23X\beta: N \rightarrow X[123X, this operation constructs the corresponding morphism77in the Serre quotient category. This operation is only implemented if [3XA/C[103X is78modeled upon a span generalized morphism category in the first option or79upon a cospan category in the second.[133X8081[1X7.1-8 SerreQuotientCategoryMorphismWithSourceAid[101X8283[29X[2XSerreQuotientCategoryMorphismWithSourceAid[102X( [3XA/C[103X, [3Xalpha[103X, [3Xbeta[103X ) [32X operation84[6XReturns:[106X [33X[0;10Ya morphism[133X8586[33X[0;0YGiven a Serre quotient category [3XA/C[103X and two morphisms [23X\alpha: M \rightarrow87X[123X and [23X\beta: X \rightarrow N[123X this operation constructs the corresponding88morphism in the Serre quotient category.[133X8990[1X7.1-9 SerreQuotientCategoryMorphismWithRangeAid[101X9192[29X[2XSerreQuotientCategoryMorphismWithRangeAid[102X( [3XA/C[103X, [3Xalpha[103X, [3Xbeta[103X ) [32X operation93[6XReturns:[106X [33X[0;10Ya morphism[133X9495[33X[0;0YGiven a Serre quotient category [3XA/C[103X and two morphisms [23X\alpha: X \rightarrow96M[123X and [23X\beta: X \rightarrow N[123X this operation constructs the corresponding97morphism in the Serre quotient category.[133X9899[1X7.1-10 AsSerreQuotientCategoryMorphism[101X100101[29X[2XAsSerreQuotientCategoryMorphism[102X( [3XA/C[103X, [3Xphi[103X ) [32X operation102[6XReturns:[106X [33X[0;10Ya morphism[133X103104[33X[0;0YGiven a Serre quotient category [3XA/C[103X and a morphism [3Xphi[103X in [3XA[103X, this105constructor returns the corresponding morphism in the Serre quotient106category.[133X107108[1X7.1-11 SubcategoryMembershipTestFunctionForSerreQuotient[101X109110[29X[2XSubcategoryMembershipTestFunctionForSerreQuotient[102X( [3XC[103X ) [32X attribute111[6XReturns:[106X [33X[0;10Ya function[133X112113[33X[0;0YWhen a Serre quotient category is created, a membership function for the114subcategory is given. This attribute stores and returns this function[133X115116[1X7.1-12 UnderlyingHonestCategory[101X117118[29X[2XUnderlyingHonestCategory[102X( [3XA/C[103X ) [32X attribute119[6XReturns:[106X [33X[0;10Ya category[133X120121[33X[0;0YFor a Serre quotient category [3XA/C[103X this attribute returns the category [3XA[103X.[133X122123[1X7.1-13 UnderlyingGeneralizedMorphismCategory[101X124125[29X[2XUnderlyingGeneralizedMorphismCategory[102X( [3XA/C[103X ) [32X attribute126[6XReturns:[106X [33X[0;10Ya category[133X127128[33X[0;0YFor a Serre quotient category [3XA/C[103X this attribute returns generalized129morphism category the quotient is modelled upon.[133X130131[1X7.1-14 UnderlyingGeneralizedObject[101X132133[29X[2XUnderlyingGeneralizedObject[102X( [3XM[103X ) [32X attribute134[6XReturns:[106X [33X[0;10Yan object[133X135136[33X[0;0YFor an object [3XM[103X in the Serre quotient category A/C this attribute returns137the corresponding object in the generalized morphism category the quotient138is modelled upon.[133X139140[1X7.1-15 UnderlyingHonestObject[101X141142[29X[2XUnderlyingHonestObject[102X( [3XM[103X ) [32X attribute143[6XReturns:[106X [33X[0;10Yan object[133X144145[33X[0;0YFor an object [3XM[103X in the Serre quotient category A/C this attribute returns146the corresponding object in [3XA[103X.[133X147148[1X7.1-16 UnderlyingGeneralizedMorphism[101X149150[29X[2XUnderlyingGeneralizedMorphism[102X( [3Xphi[103X ) [32X attribute151[6XReturns:[106X [33X[0;10Ya morphism[133X152153[33X[0;0YFor a morphism [3Xphi[103X in the Serre quotient category A/C this attribute returns154the corresponding generalized morphism in the generalized morphism category155the quotient is modelled upon.[133X156157[1X7.1-17 CanonicalProjection[101X158159[29X[2XCanonicalProjection[102X( [3XA/C[103X ) [32X attribute160[6XReturns:[106X [33X[0;10Ya functor[133X161162[33X[0;0YGiven a Serre quotient category [3XA/C[103X, this operation returns the canonical163projection functor [23X A \rightarrow A/C [123X.[133X164165166[1X7.2 [33X[0;0YSerre quotients by cospans[133X[101X167168[1X7.2-1 SerreQuotientCategoryByCospans[101X169170[29X[2XSerreQuotientCategoryByCospans[102X( [3XA[103X, [3Xfunc[103X[, [3Xname[103X] ) [32X operation171[6XReturns:[106X [33X[0;10Ya CAP category[133X172173[33X[0;0YCreates a Serre quotient category S with name [3Xname[103X out of an Abelian174category [3XA[103X. The Serre quotient category will be modeled upon the generalized175morphisms by cospans category of [3XA[103X If [3Xname[103X is not given, a generic name is176constructed out of the name of [3XA[103X. The argument [3Xfunc[103X must be a unary function177on the objects of [3XA[103X deciding the membership in the thick subcategory C178mentioned above.[133X179180[1X7.2-2 AsSerreQuotientCategoryByCospansObject[101X181182[29X[2XAsSerreQuotientCategoryByCospansObject[102X( [3XA/C[103X, [3XM[103X ) [32X operation183[6XReturns:[106X [33X[0;10Yan object[133X184185[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by cospans and an object [3XM[103X in [3XA[103X,186this constructor returns the corresponding object in the Serre quotient187category.[133X188189[1X7.2-3 SerreQuotientCategoryByCospansMorphism[101X190191[29X[2XSerreQuotientCategoryByCospansMorphism[102X( [3XA/C[103X, [3Xphi[103X ) [32X operation192[6XReturns:[106X [33X[0;10Ya morphism[133X193194[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by cospans and a generalized195morphism [3Xphi[103X in the generalized morphism category [3XA/C[103X is modeled upon, this196constructor returns the corresponding morphism in the Serre quotient197category.[133X198199[1X7.2-4 SerreQuotientCategoryByCospansMorphism[101X200201[29X[2XSerreQuotientCategoryByCospansMorphism[102X( [3XA/C[103X, [3Xiota[103X, [3Xphi[103X, [3Xpi[103X ) [32X operation202[6XReturns:[106X [33X[0;10Ya morphism[133X203204[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by cospans and three morphisms205[23X\iota: M' \rightarrow M[123X, [23X\phi: M' \rightarrow N'[123X and [23X\pi: N \rightarrow N'[123X206this operation contructs a morphism in the Serre quotient category.[133X207208[1X7.2-5 SerreQuotientCategoryByCospansMorphismWithSourceAid[101X209210[29X[2XSerreQuotientCategoryByCospansMorphismWithSourceAid[102X( [3XA/C[103X, [3Xalpha[103X, [3Xbeta[103X ) [32X operation211[6XReturns:[106X [33X[0;10Ya morphism[133X212213[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by cospans and two morphisms214[23X\alpha: M \rightarrow X[123X and [23X\beta: X \rightarrow N[123X this operation constructs215the corresponding morphism in the Serre quotient category.[133X216217[1X7.2-6 SerreQuotientCategoryByCospansMorphism[101X218219[29X[2XSerreQuotientCategoryByCospansMorphism[102X( [3XA/C[103X, [3Xalpha[103X, [3Xbeta[103X ) [32X operation220[6XReturns:[106X [33X[0;10Ya morphism[133X221222[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by cospans and two morphisms223[23X\alpha: X \rightarrow M[123X and [23X\beta: X \rightarrow N[123X this operation constructs224the corresponding morphism in the Serre quotient category.[133X225226[1X7.2-7 AsSerreQuotientCategoryByCospansMorphism[101X227228[29X[2XAsSerreQuotientCategoryByCospansMorphism[102X( [3XA/C[103X, [3Xphi[103X ) [32X operation229[6XReturns:[106X [33X[0;10Ya morphism[133X230231[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by cospans and a morphism [3Xphi[103X in232[3XA[103X, this constructor returns the corresponding morphism in the Serre quotient233category.[133X234235236[1X7.3 [33X[0;0YSerre Quotients by Spans[133X[101X237238[1X7.3-1 SerreQuotientCategoryBySpans[101X239240[29X[2XSerreQuotientCategoryBySpans[102X( [3XA[103X, [3Xfunc[103X[, [3Xname[103X] ) [32X operation241[6XReturns:[106X [33X[0;10Ya CAP category[133X242243[33X[0;0YCreates a Serre quotient category S with name [3Xname[103X out of an Abelian244category [3XA[103X. The Serre quotient category will be modeled upon the generalized245morphisms by spans category of [3XA[103X If [3Xname[103X is not given, a generic name is246constructed out of the name of [3XA[103X. The argument [3Xfunc[103X must be a unary function247on the objects of [3XA[103X deciding the membership in the thick subcategory C248mentioned above.[133X249250[1X7.3-2 AsSerreQuotientCategoryBySpansObject[101X251252[29X[2XAsSerreQuotientCategoryBySpansObject[102X( [3XA/C[103X, [3XM[103X ) [32X operation253[6XReturns:[106X [33X[0;10Yan object[133X254255[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by spans and an object [3XM[103X in [3XA[103X,256this constructor returns the corresponding object in the Serre quotient257category.[133X258259[1X7.3-3 SerreQuotientCategoryBySpansMorphism[101X260261[29X[2XSerreQuotientCategoryBySpansMorphism[102X( [3XA/C[103X, [3Xphi[103X ) [32X operation262[6XReturns:[106X [33X[0;10Ya morphism[133X263264[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by spans and a generalized265morphism [3Xphi[103X in the generalized morphism category [3XA/C[103X is modeled upon, this266constructor returns the corresponding morphism in the Serre quotient267category.[133X268269[1X7.3-4 SerreQuotientCategoryBySpansMorphism[101X270271[29X[2XSerreQuotientCategoryBySpansMorphism[102X( [3XA/C[103X, [3Xiota[103X, [3Xphi[103X, [3Xpi[103X ) [32X operation272[6XReturns:[106X [33X[0;10Ya morphism[133X273274[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by spans and three morphisms275[23X\iota: M' \rightarrow M[123X, [23X\phi: M' \rightarrow N'[123X and [23X\pi: N \rightarrow N'[123X276this operation contructs a morphism in the Serre quotient category.[133X277278[1X7.3-5 SerreQuotientCategoryBySpansMorphism[101X279280[29X[2XSerreQuotientCategoryBySpansMorphism[102X( [3XA/C[103X, [3Xalpha[103X, [3Xbeta[103X ) [32X operation281[6XReturns:[106X [33X[0;10Ya morphism[133X282283[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by spans and two morphisms284[23X\alpha: M \rightarrow X[123X and [23X\beta: X \rightarrow N[123X this operation constructs285the corresponding morphism in the Serre quotient category.[133X286287[1X7.3-6 SerreQuotientCategoryBySpansMorphismWithRangeAid[101X288289[29X[2XSerreQuotientCategoryBySpansMorphismWithRangeAid[102X( [3XA/C[103X, [3Xalpha[103X, [3Xbeta[103X ) [32X operation290[6XReturns:[106X [33X[0;10Ya morphism[133X291292[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by spans and two morphisms293[23X\alpha: X \rightarrow M[123X and [23X\beta: X \rightarrow N[123X this operation constructs294the corresponding morphism in the Serre quotient category.[133X295296[1X7.3-7 AsSerreQuotientCategoryBySpansMorphism[101X297298[29X[2XAsSerreQuotientCategoryBySpansMorphism[102X( [3XA/C[103X, [3Xphi[103X ) [32X operation299[6XReturns:[106X [33X[0;10Ya morphism[133X300301[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by spans and a morphism [3Xphi[103X in302[3XA[103X, this constructor returns the corresponding morphism in the Serre quotient303category.[133X304305306[1X7.4 [33X[0;0YSerre Quotients modeled by three arrows[133X[101X307308[1X7.4-1 SerreQuotientCategoryByThreeArrows[101X309310[29X[2XSerreQuotientCategoryByThreeArrows[102X( [3XA[103X, [3Xfunc[103X[, [3Xname[103X] ) [32X operation311[6XReturns:[106X [33X[0;10Ya CAP category[133X312313[33X[0;0YCreates a Serre quotient category S with name [3Xname[103X out of an Abelian314category [3XA[103X. The Serre quotient category will be modeled upon the generalized315morphisms by three arrows category of [3XA[103X If [3Xname[103X is not given, a generic name316is constructed out of the name of [3XA[103X. The argument [3Xfunc[103X must be a unary317function on the objects of [3XA[103X deciding the membership in the thick318subcategory C mentioned above.[133X319320[1X7.4-2 AsSerreQuotientCategoryByThreeArrowsObject[101X321322[29X[2XAsSerreQuotientCategoryByThreeArrowsObject[102X( [3XA/C[103X, [3XM[103X ) [32X operation323[6XReturns:[106X [33X[0;10Yan object[133X324325[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by three arrows and an object [3XM[103X326in [3XA[103X, this constructor returns the corresponding object in the Serre327quotient category.[133X328329[1X7.4-3 SerreQuotientCategoryByThreeArrowsMorphism[101X330331[29X[2XSerreQuotientCategoryByThreeArrowsMorphism[102X( [3XA/C[103X, [3Xphi[103X ) [32X operation332[6XReturns:[106X [33X[0;10Ya morphism[133X333334[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by three arrows and a335generalized morphism [3Xphi[103X in the generalized morphism category [3XA/C[103X is modeled336upon, this constructor returns the corresponding morphism in the Serre337quotient category.[133X338339[1X7.4-4 SerreQuotientCategoryByThreeArrowsMorphism[101X340341[29X[2XSerreQuotientCategoryByThreeArrowsMorphism[102X( [3XA/C[103X, [3Xiota[103X, [3Xphi[103X, [3Xpi[103X ) [32X operation342[6XReturns:[106X [33X[0;10Ya morphism[133X343344[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by three arrows and three345morphisms [23X\iota: M' \rightarrow M[123X, [23X\phi: M' \rightarrow N'[123X and [23X\pi: N346\rightarrow N'[123X this operation contructs a morphism in the Serre quotient347category.[133X348349[1X7.4-5 SerreQuotientCategoryByThreeArrowsMorphismWithSourceAid[101X350351[29X[2XSerreQuotientCategoryByThreeArrowsMorphismWithSourceAid[102X( [3XA/C[103X, [3Xalpha[103X, [3Xbeta[103X ) [32X operation352[6XReturns:[106X [33X[0;10Ya morphism[133X353354[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by three arrows and two355morphisms [23X\alpha: M \rightarrow X[123X and [23X\beta: X \rightarrow N[123X this operation356constructs the corresponding morphism in the Serre quotient category.[133X357358[1X7.4-6 SerreQuotientCategoryByThreeArrowsMorphismWithRangeAid[101X359360[29X[2XSerreQuotientCategoryByThreeArrowsMorphismWithRangeAid[102X( [3XA/C[103X, [3Xalpha[103X, [3Xbeta[103X ) [32X operation361[6XReturns:[106X [33X[0;10Ya morphism[133X362363[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by three arrows and two364morphisms [23X\alpha: X \rightarrow M[123X and [23X\beta: X \rightarrow N[123X this operation365constructs the corresponding morphism in the Serre quotient category.[133X366367[1X7.4-7 AsSerreQuotientCategoryByThreeArrowsMorphism[101X368369[29X[2XAsSerreQuotientCategoryByThreeArrowsMorphism[102X( [3XA/C[103X, [3Xphi[103X ) [32X operation370[6XReturns:[106X [33X[0;10Ya morphism[133X371372[33X[0;0YGiven a Serre quotient category [3XA/C[103X modeled by three arrows and a morphism373[3Xphi[103X in [3XA[103X, this constructor returns the corresponding morphism in the Serre374quotient category.[133X375376377378