Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563661 views
1
2
3
HAPcryst – An extension of the GAP package HAP for crystallographic groups
4
5
6
( Version 0.1.11 )
7
8
9
Marc Röder
10
11
12
13
Marc Röder
14
Email: mailto:marc_roeder(at)web.de
15
16
17
Address: Marc Röder, Department of Mathematics, NUI Galway, Irleland
18
19
20
-------------------------------------------------------
21
Abstract
22
23
-------------------------------------------------------
24
Copyright
25
© 2007 Marc Röder.
26
27
This package is distributed under the terms of the GNU General Public
28
License version 2 or later (at your convenience). See the file LICENSE.txt
29
or http://www.gnu.org/copyleft/gpl.html
30
31
32
-------------------------------------------------------
33
Acknowledgements
34
This work was supported by Marie Curie Grant No. MTKD-CT-2006-042685
35
36
37
-------------------------------------------------------
38
39
40
Contents (HAPcryst)
41
42
1 Introduction
43
1.1 Abstract and Notation
44
1.1-1 The natural action of crystallographic groups
45
1.2 Requirements
46
1.2-1 Recommendation concerning polymake
47
1.3 Global Variables
48
1.3-1 InfoHAPcryst
49
2 Bits and Pieces
50
2.1 Matrices and Vectors
51
2.1-1 SignRat
52
2.1-2 VectorModOne
53
2.1-3 IsSquareMat
54
2.1-4 DimensionSquareMat
55
2.2 Affine Matrices OnRight
56
2.2-1 LinearPartOfAffineMatOnRight
57
2.2-2 BasisChangeAffineMatOnRight
58
2.2-3 TranslationOnRightFromVector
59
2.3 Geometry
60
2.3-1 GramianOfAverageScalarProductFromFiniteMatrixGroup
61
2.3-2 Inequalities
62
2.3-3 BisectorInequalityFromPointPair
63
2.3-4 WhichSideOfHyperplane
64
2.3-5 RelativePositionPointAndPolygon
65
2.4 Space Groups
66
2.4-1 PointGroupRepresentatives
67
3 Algorithms of Orbit-Stabilizer Type
68
3.1 Orbit Stabilizer for Crystallographic Groups
69
3.1-1 OrbitStabilizerInUnitCubeOnRight
70
3.1-2 OrbitStabilizerInUnitCubeOnRightOnSets
71
3.1-3 OrbitPartInVertexSetsStandardSpaceGroup
72
3.1-4 OrbitPartInFacesStandardSpaceGroup
73
3.1-5 OrbitPartAndRepresentativesInFacesStandardSpaceGroup
74
3.1-6 StabilizerOnSetsStandardSpaceGroup
75
3.1-7 RepresentativeActionOnRightOnSets
76
3.1-8 Getting other orbit parts
77
3.1-9 ShiftedOrbitPart
78
3.1-10 TranslationsToOneCubeAroundCenter
79
3.1-11 TranslationsToBox
80
4 Resolutions of Crystallographic Groups
81
4.1 Fundamental Domains
82
4.1-1 FundamentalDomainStandardSpaceGroup
83
4.1-2 FundamentalDomainBieberbachGroup
84
4.1-3 FundamentalDomainFromGeneralPointAndOrbitPartGeometric
85
4.1-4 IsFundamentalDomainStandardSpaceGroup
86
4.1-5 IsFundamentalDomainBieberbachGroup
87
4.2 Face Lattice and Resolution
88
4.2-1 ResolutionBieberbachGroup
89
4.2-2 FaceLatticeAndBoundaryBieberbachGroup
90
4.2-3 ResolutionFromFLandBoundary
91
92
93
-------------------------------------------------------
94
95