Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563667 views
1
<?xml version="1.0" encoding="UTF-8"?>
2
<Section>
3
<Heading>
4
Almost-symmetric numerical semigroups
5
</Heading>
6
7
8
A numerical semigroup is almost-symmetric (<Cite Key="BF97"></Cite>) if its genus is the arithmetic mean of its Frobenius number and type.
9
We use a procedure presented in <Cite Key="MR3169635"></Cite> to determine the set of all almost-symmetric numerical semigroups with given Frobenius
10
number. In order to do this, we first calculate the set of all almost-symmetric numerical semigroups that can be constructed from an irreducible
11
numerical semigroup.
12
<P/>
13
<ManSection>
14
<Func Arg="s" Name="AlmostSymmetricNumericalSemigroupsFromIrreducible"></Func>
15
<Description>
16
<A>s</A> is an irreducible numerical semigroup. The output is the set of almost-symetric numerical semigroups that can be constructed
17
from <A>s</A> by removing some of its generators as explained in <Cite Key="MR3169635"></Cite>).
18
<Example><![CDATA[
19
gap> ns := NumericalSemigroup(5,8,9,11);;
20
gap> AlmostSymmetricNumericalSemigroupsFromIrreducible(ns);
21
[ <Numerical semigroup with 4 generators>,
22
<Numerical semigroup with 5 generators>,
23
<Numerical semigroup with 5 generators> ]
24
gap> List(last,MinimalGeneratingSystemOfNumericalSemigroup);
25
[ [ 5, 8, 9, 11 ], [ 5, 8, 11, 14, 17 ], [ 5, 9, 11, 13, 17 ] ]
26
]]></Example>
27
</Description>
28
</ManSection>
29
30
<ManSection>
31
<Func Arg="s" Name="IsAlmostSymmetric"></Func>
32
<Func Arg="s" Name="IsAlmostSymmetricNumericalSemigroup"></Func>
33
<Description>
34
<A>s</A> is a numerical semigroup. The output is true if the numerical semigroup is almost symmetric.
35
<Example><![CDATA[
36
gap> IsAlmostSymmetricNumericalSemigroup(NumericalSemigroup(5,8,11,14,17));
37
true
38
]]></Example>
39
</Description>
40
</ManSection>
41
42
<ManSection>
43
<Func Arg="f" Name="AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber"></Func>
44
<Description>
45
<A>f</A> is an integer greater than or equal to -1. The output is the set of all almost symmetric
46
numerical semigroups with Frobenius number <A>f</A>.
47
<Example><![CDATA[
48
gap> Length(AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber(12));
49
15
50
gap> Length(IrreducibleNumericalSemigroupsWithFrobeniusNumber(12));
51
2
52
]]></Example>
53
</Description>
54
</ManSection>
55
</Section>
56
57