Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563666 views
1
<?xml version="1.0" encoding="UTF-8"?>
2
<Section>
3
<Heading>
4
Irreducible numerical semigroups
5
</Heading>
6
An irreducible numerical semigroup is a semigroup that cannot be expressed as the
7
intersection of numerical semigroups properly containing it.
8
<P/>
9
10
It is not difficult to prove that a semigroup is irreducible if and only if it is
11
maximal (with respect to set inclusion) in the set of all numerical semigroups having
12
its same Frobenius number (see <Cite Key="RB03"></Cite>). Hence, according to
13
<Cite Key="FGH87"></Cite> (respectively <Cite Key="BDF97"></Cite>),
14
symmetric (respectively pseudo-symmetric) numerical semigroups are those irreducible
15
numerical semigroups with odd (respectively even) Frobenius number.
16
<P/>
17
18
In <Cite Key="RGGJ03"></Cite> it is shown that a nontrivial numerical semigroup is irreducible if and
19
only if it has only one special gap. We use this characterization.
20
<P/>
21
22
In this section we show how to construct the set of all numerical semigroups with a
23
given Frobenius number. In old versions of the package, we first constructed an irreducible numerical semigroup with
24
the given Frobenius number (as explained in <Cite Key="RGS04"></Cite>), and then
25
we constructed the rest from it. That is why we separated both functions.
26
The present version uses a faster procedure presented in <Cite Key="BR13"></Cite>.
27
<P/>
28
29
Every numerical semigroup can be expressed as an intersection of irreducible
30
numerical semigroups. If <M>S</M> can be expressed as <M>S=S_1\cap \cdots\cap S_n</M>,
31
with <M>S_i</M> irreducible numerical semigroups, and no factor can be removed, then
32
we say that this decomposition is minimal. Minimal decompositions can be computed by
33
using Algorithm 26 in <Cite Key="RGGJ03"></Cite>.
34
<P/>
35
36
37
<ManSection>
38
<Prop Arg="s" Name="IsIrreducibleNumericalSemigroup"></Prop>
39
<Prop Arg="s" Name="IsIrreducible" Label="for numerical semigroups"></Prop>
40
41
<Description>
42
<A>s</A> is a numerical semigroup. The output is true if <A>s</A> is irreducible,
43
false otherwise.
44
<Example><![CDATA[
45
gap> IsIrreducibleNumericalSemigroup(NumericalSemigroup(4,6,9));
46
true
47
gap> IsIrreducibleNumericalSemigroup(NumericalSemigroup(4,6,7,9));
48
false
49
]]></Example>
50
</Description>
51
</ManSection>
52
53
54
<ManSection>
55
<!--<Prop Arg="s" Name="IsSymmetric"></Prop>-->
56
<Attr Arg="s" Name="IsSymmetricNumericalSemigroup"></Attr>
57
<Attr Arg="s" Name="IsSymmetric" Label="for numerical semigroups"></Attr>
58
59
<Description>
60
<A>s</A> is a numerical semigroup. The output is true if <A>s</A> is symmetric,
61
false otherwise.
62
<Example><![CDATA[
63
gap> IsSymmetric(NumericalSemigroup(10,23));
64
true
65
gap> IsSymmetricNumericalSemigroup(NumericalSemigroup(10,11,23));
66
false
67
]]></Example>
68
</Description>
69
</ManSection>
70
71
<ManSection>
72
<Prop Arg="s" Name="IsPseudoSymmetric" Label="for numerical semigroups"></Prop>
73
<Prop Arg="s" Name="IsPseudoSymmetricNumericalSemigroup"></Prop>
74
<Description>
75
<A>s</A> is a numerical semigroup. The output is true if <A>s</A> is pseudo-symmetric,
76
false otherwise.
77
<Example><![CDATA[
78
gap> IsPseudoSymmetricNumericalSemigroup(NumericalSemigroup(6,7,8,9,11));
79
true
80
gap> IsPseudoSymmetricNumericalSemigroup(NumericalSemigroup(4,6,9));
81
false
82
]]></Example>
83
</Description>
84
</ManSection>
85
86
87
<ManSection>
88
<Func Arg="f" Name="AnIrreducibleNumericalSemigroupWithFrobeniusNumber"></Func>
89
<Description>
90
<A>f</A> is an integer greater than or equal to -1. The output is an irreducible
91
numerical semigroup with Frobenius number <A> f</A>. From the way the procedure is
92
implemented, the resulting semigroup has at most four generators (see <Cite Key="RGS04"></Cite>).
93
<Example><![CDATA[
94
gap> s := AnIrreducibleNumericalSemigroupWithFrobeniusNumber(28);
95
<Numerical semigroup with 3 generators>
96
gap> MinimalGenerators(s);
97
[ 3, 17, 31 ]
98
gap> FrobeniusNumber(s);
99
28
100
]]></Example>
101
</Description>
102
</ManSection>
103
104
105
<ManSection>
106
<Func Arg="f" Name="IrreducibleNumericalSemigroupsWithFrobeniusNumber"></Func>
107
<Description>
108
<A>f</A> is an integer greater than or equal to -1. The output is the set of all
109
irreducible numerical semigroups with Frobenius number <A>f</A>.
110
<Example><![CDATA[
111
gap> Length(IrreducibleNumericalSemigroupsWithFrobeniusNumber(19));
112
20
113
]]></Example>
114
</Description>
115
</ManSection>
116
117
<ManSection>
118
<Func Arg="s" Name="DecomposeIntoIrreducibles" Label="for numerical semigroup"></Func>
119
<Description>
120
<A>s</A> is a numerical semigroup. The output is a set of irreducible
121
numerical semigroups containing it. These elements appear in a minimal
122
decomposition of <A>s</A> as intersection into irreducibles.
123
<Example><![CDATA[
124
gap> DecomposeIntoIrreducibles(NumericalSemigroup(5,6,8));
125
[ <Numerical semigroup with 3 generators>,
126
<Numerical semigroup with 4 generators> ]
127
]]></Example>
128
</Description>
129
</ManSection>
130
131
</Section>
132
133