GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
<?xml version="1.0" encoding="UTF-8"?>12<!--34examples.xml SCO package documentation Simon Goertzen567Copyright (C) 2007-2008, Lehrstuhl B für Mathematik, RWTH-Aachen89This chapter gives examples on the usage of this package.1011-->1213<Chapter Label="examples"><Heading>Examples</Heading>1415Although there are some small examples embedded in chapter <Ref16Chap="ch:MandF"/>, we will give some complete examples in this17chapter. Most of these could easily be called with the example script18mentioned in chapter <Ref Chap="usage"/>, but we will do them step by19step for best reproducability.2021<Section><Heading>Example 1: Klein Bottle</Heading>22Suppose we want to calculate the cohomology of the Klein23Bottle. First, we need a triangulation.2425It could look like this:2627<Alt Only="LaTeX">28\begin{figure}[htbp]29\begin{center}30\includegraphics{files/pgt}31\caption{triangulation}32\end{center}33\end{figure}34</Alt>3536<Alt Not="LaTeX">37<Listing>381--2--3--139|\ |\ |\ |40| \| \| \|414--5--6--442|\ |\ |\ |43| \| \| \|447--8--9--745|\ |\ |\ |46| \| \| \|471--3--2--148</Listing>49</Alt>5051<P/>52This results in the following list of maximum simplices:5354<Example>55gap> M := [ [1,2,4], [1,2,7], [1,3,6], [1,3,8], [1,4,6], [1,7,8],56> [2,3,5], [2,3,9], [2,4,5], [2,7,9], [3,5,6], [3,8,9],57> [4,5,7], [4,6,9], [4,7,9], [5,6,8], [5,7,8], [6,8,9] ];;58</Example>5960As there is no isotropy and therefore no <M>\mu</M>-map, we can61continue with the orbifold triangulation and simplicial set:6263<Example><![CDATA[64gap> ot := OrbifoldTriangulation( M, "Klein Bottle" );65<OrbifoldTriangulation "Klein Bottle" of dimension 2. 18 simplices on 9 vertic\66es without Isotropy>67gap> ss := SimplicialSet( ot );68<The simplicial set of the orbifold triangulation "Klein Bottle", computed up \69to dimension 0 with Length vector [ 18 ]>70]]></Example>7172Now we will need a &homalg; ring. As this is a small example we can73compute directly over &ZZ;, so we can use &GAP;. In case you have74&RingsForHomalg; installed you might want to try computing in another75computer algebra system with the command76<C>HomalgRingOfIntegersInCAS()</C>, replacing "CAS" with the77corresponding system.7879<Example><![CDATA[80gap> R := HomalgRingOfIntegers();81Z82]]></Example>8384We are almost there. Let us create some coboundary matrices and compute85their cohomology:8687<Example><![CDATA[88gap> c := CreateCoboundaryMatrices( ss, 4, R );;89gap> C := Cohomology( c, R );90----------------------------------------------->>>> Z^(1 x 1)91----------------------------------------------->>>> Z^(1 x 1)92----------------------------------------------->>>> Z/< 2 >93----------------------------------------------->>>> 094----------------------------------------------->>>> 095<A graded cohomology object consisting of 5 left modules at degrees96[ 0 .. 4 ]>97]]></Example>9899This is the cohomology of the Klein Bottle.100101</Section>102103<Section><Heading>Example 2: <M>V_4</M></Heading>104105&SCO; can also be used to compute group cohomology, as every group can106be represented as an orbifold with just a single point. For107<M>V_4</M>, it would look like this:108109<Example><![CDATA[110gap> M := [ [1] ];;111gap> V4 := Group( (1,2), (3,4) );;112gap> iso := rec( 1 := V4 );;113gap> ot := OrbifoldTriangulation( M, iso, "V4" );114<OrbifoldTriangulation "V4" of dimension 0. 1 simplex on 1 vertex with Isotrop\115y on 1 vertex>116gap> ss := SimplicialSet( ot );117<The simplicial set of the orbifold triangulation "V4", computed up to dimensi\118on 0 with Length vector [ 1 ]>119gap> R := HomalgRingOfIntegers();120Z121gap> c := CreateCoboundaryMatrices( ss, 4, R );;122gap> C := Cohomology( c, R );123----------------------------------------------->>>> Z^(1 x 1)124----------------------------------------------->>>> 0125----------------------------------------------->>>> Z/< 2 > + Z/< 2 >126----------------------------------------------->>>> Z/< 2 >127----------------------------------------------->>>> Z/< 2 > + Z/< 2 > + Z/< 2\128>129<A graded cohomology object consisting of 5 left modules at degrees130[ 0 .. 4 ]>131]]></Example>132133This is the <M>V_4</M> group cohomology up to degree 4.134135</Section>136137<Section><Heading>Example 3: The "Teardrop" orbifold</Heading>138139You have seen a manifold in example 1, and group cohomology in example1402. Now we will meet our first proper orbifold, the Teardrop. This is141the example Moerdijk and Pronk used in their paper <Cite142Key="MP_SCO"/> on which my work is based. It is an easy example, but143includes both nontrivial isotropy and <M>\mu</M>-maps. We take the144isotropy at the top to be <M>C_2</M>.145146The triangulation looks like this, with the gluing being at [1,3].147148<Alt Only="LaTeX">149\begin{figure}[htbp]150\begin{center}151\includegraphics{files/Teardrop}152\caption{triangulation}153\end{center}154\end{figure}155</Alt>156157<Alt Not="LaTeX">158<Listing>1593=====1=====3160/ \ / \ / \161/ \ / \ / \1625-----2-----4-----5163\ /164\ /1655166</Listing>167</Alt>168169<P/>The source code:170171<Example><![CDATA[172gap> M := [ [1,2,3], [1,2,4], [1,3,4], [2,3,5], [2,4,5], [3,4,5] ];;173gap> iso := rec( 1 := Group( (1,2) ) );;174gap> mu := [175> [ [3], [1,3], [1,2,3], [1,3,4], x -> (1,2) ],176> [ [3], [1,3], [1,3,4], [1,2,3], x -> (1,2) ]177> ];;178gap> ot := OrbifoldTriangulation( M, iso, mu, "Teardrop" );179<OrbifoldTriangulation "Teardrop" of dimension 2. 6 simplices on 5 vertices wi\180th Isotropy on 1 vertex and nontrivial mu-maps>181gap> ss := SimplicialSet( ot );182<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\183imension 0 with Length vector [ 6 ]>184gap> R := HomalgRingOfIntegers();185Z186gap> c := CreateCoboundaryMatrices( ss, 6, R );;187gap> C := Cohomology( c, R );188----------------------------------------------->>>> Z^(1 x 1)189----------------------------------------------->>>> 0190----------------------------------------------->>>> Z^(1 x 1)191----------------------------------------------->>>> 0192----------------------------------------------->>>> Z/< 2 >193----------------------------------------------->>>> 0194----------------------------------------------->>>> Z/< 2 >195<A graded cohomology object consisting of 7 left modules at degrees196[ 0 .. 6 ]>197]]></Example>198199This is the Teardrop cohomology.200201</Section>202203</Chapter>204205206