GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
1[1X7 [33X[0;0YInduced constructions[133X[101X23[33X[0;0YBefore describing general functions for computing induced structures, we4consider coproducts of crossed modules which provide induced crossed modules5in certain cases.[133X678[1X7.1 [33X[0;0YCoproducts of crossed modules[133X[101X910[33X[0;0YNeed to add here a reference (or two) for coproducts.[133X1112[1X7.1-1 CoproductXMod[101X1314[29X[2XCoproductXMod[102X( [3XX1[103X, [3XX2[103X ) [32X operation1516[33X[0;0YThis function calculates the coproduct crossed module of crossed modules17[22Xmathcal X_1 = (∂_1 : S_1 -> R)[122X and [22Xmathcal X_2 = (∂_2 : S_2 -> R)[122X which have18a common range [22XR[122X. The source [22XS_2[122X of [22Xmathcal X_2[122X acts on [22XS_1[122X via [22X∂_2[122X and the19action of [22Xmathcal X_1[122X, so we can form a precrossed module [22X(∂' : S_1 ⋉ S_2 ->20R)[122X where [22X∂'(s_1,s_2) = (∂_1 s_1)(∂_2 s_2)[122X. The action of this precrossed21module is the diagonal action [22X(s_1,s_2)^r = (s_1^r,s_2^r)[122X. Factoring out by22the Peiffer subgroup, we obtain the coproduct crossed module [22Xmathcal X_1 ∘23mathcal X_2[122X.[133X2425[33X[0;0YIn the example the structure descriptions of the precrossed module, the26Peiffer subgroup, and the resulting coproduct are printed out when27[10XInfoLevel(InfoXMod}[110X is at least [22X1[122X. The coproduct comes supplied with28attribute [10XCoproductInfo[110X, which includes the embedding morphisms of the two29factors.[133X3031[4X[32X Example [32X[104X32[4X[28X[128X[104X33[4X[25Xgap>[125X [27Xq8 := Group( (1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8) );;[127X[104X34[4X[25Xgap>[125X [27XX8 := XModByAutomorphismGroup( q8 );;[127X[104X35[4X[25Xgap>[125X [27Xs4 := Range( X8 );; [127X[104X36[4X[25Xgap>[125X [27XSetName( q8, "q8" ); SetName( s4, "s4" ); [127X[104X37[4X[25Xgap>[125X [27Xk4 := NormalSubgroups( s4 )[3];; SetName( k4, "k4" );[127X[104X38[4X[25Xgap>[125X [27XZ8 := XModByNormalSubgroup( s4, k4 );;[127X[104X39[4X[25Xgap>[125X [27XSetName( X8, "X8" ); SetName( Z8, "Z8" ); [127X[104X40[4X[25Xgap>[125X [27XSetInfoLevel( InfoXMod, 1 ); [127X[104X41[4X[25Xgap>[125X [27XXZ8 := CoproductXMod( X8, Z8 );[127X[104X42[4X[28X#I prexmod is [ "C2 x C2 x Q8", "S4" ][128X[104X43[4X[28X#I peiffer subgroup is C2[128X[104X44[4X[28X#I the coproduct is [ "C2 x C2 x C2 x C2", "S4" ][128X[104X45[4X[28X[Group( [ f1, f2, f3, f4 ] )->s4][128X[104X46[4X[25Xgap>[125X [27XSetName( XZ8, "XZ8" ); [127X[104X47[4X[25Xgap>[125X [27Xinfo := CoproductInfo( XZ8 );[127X[104X48[4X[28Xrec( embeddings := [ [X8 => XZ8], [Z8 => XZ8] ], xmods := [ X8, Z8 ] )[128X[104X49[4X[28X[128X[104X50[4X[32X[104X515253[1X7.2 [33X[0;0YInduced crossed modules[133X[101X5455[1X7.2-1 InducedXMod[101X5657[29X[2XInducedXMod[102X( [3Xargs[103X ) [32X function58[29X[2XInducedCat1[102X( [3Xargs[103X ) [32X function59[29X[2XIsInducedXMod[102X( [3Xxmod[103X ) [32X property60[29X[2XMorphismOfInducedXMod[102X( [3Xxmod[103X ) [32X attribute6162[33X[0;0YA morphism of crossed modules [22X(σ, ρ) : mathcal X_1 -> mathcal X_2[122X factors63uniquely through an induced crossed module [22Xρ_∗ mathcal X_1 = (δ : ρ_∗ S_1 ->64R_2)[122X. Similarly, a morphism of cat1-groups factors through an induced65cat1-group. Calculation of induced crossed modules of [22Xmathcal X[122X also66provides an algebraic means of determining the homotopy [22X2[122X-type of homotopy67pushouts of the classifying space of [22Xmathcal X[122X. For more background from68algebraic topology see references in [BH78], [BW95], [BW96]. Induced crossed69modules and induced cat1-groups also provide the building blocks for70constructing pushouts in the categories [13XXMod[113X and [13XCat1[113X.[133X7172[33X[0;0YData for the cases of algebraic interest is provided by a conjugation73crossed module [22Xmathcal X = (∂ : S -> R)[122X and a homomorphism [22Xι[122X from [22XR[122X to a74third group [22XQ[122X. (It is hoped to implement more general cases in due course.)75The output from the calculation is a crossed module [22Xι_∗mathcal X = (δ : ι_∗S76-> Q)[122X together with a morphism of crossed modules [22Xmathcal X -> ι_∗mathcal X[122X.77When [22Xι[122X is a surjection with kernel [22XK[122X then [22Xι_∗S = [S,K][122X (see [BH78]). When [22Xι[122X78is an inclusion the induced crossed module may be calculated using a copower79construction [BW95] or, in the case when [22XR[122X is normal in [22XQ[122X, as a coproduct of80crossed modules ([BW96], but not yet implemented). When [22Xι[122X is neither a81surjection nor an inclusion, [22Xι[122X is factored as the composite of the82surjection onto the image and the inclusion of the image in [22XQ[122X, and then the83composite induced crossed module is constructed. These constructions use84Tietze transformation routines in the library file [10Xtietze.gi[110X.[133X8586[33X[0;0YAs a first, surjective example, we take for [22Xmathcal X[122X the normal inclusion87crossed module of [10Xa4[110X in [10Xs4[110X, and for [22Xι[122X the surjection from [10Xs4[110X to [10Xs3[110X with88kernel [10Xk4[110X. The induced crossed module is isomorphic to [10XX3[110X.[133X8990[4X[32X Example [32X[104X91[4X[28X[128X[104X92[4X[25Xgap>[125X [27Xs4gens := GeneratorsOfGroup( s4 );[127X[104X93[4X[28X[ (1,2), (2,3), (3,4) ][128X[104X94[4X[25Xgap>[125X [27Xa4gens := GeneratorsOfGroup( a4 );[127X[104X95[4X[28X[ (1,2,3), (2,3,4) ][128X[104X96[4X[25Xgap>[125X [27Xs3b := Group( (5,6),(6,7) );; SetName( s3b, "s3b" );[127X[104X97[4X[25Xgap>[125X [27Xepi := GroupHomomorphismByImages( s4, s3b, s4gens, [(5,6),(6,7),(5,6)] );;[127X[104X98[4X[25Xgap>[125X [27XX4 := XModByNormalSubgroup( s4, a4 );;[127X[104X99[4X[25Xgap>[125X [27XindX4 := SurjectiveInducedXMod( X4, epi );[127X[104X100[4X[28X[a4/ker->s3b][128X[104X101[4X[25Xgap>[125X [27XDisplay( indX4 );[127X[104X102[4X[28X[128X[104X103[4X[28XCrossed module [a4/ker->s3b] :- [128X[104X104[4X[28X: Source group a4/ker has generators:[128X[104X105[4X[28X [ (1,3,2), (1,2,3) ][128X[104X106[4X[28X: Range group s3b has generators:[128X[104X107[4X[28X [ (5,6), (6,7) ][128X[104X108[4X[28X: Boundary homomorphism maps source generators to:[128X[104X109[4X[28X [ (5,6,7), (5,7,6) ][128X[104X110[4X[28X: Action homomorphism maps range generators to automorphisms:[128X[104X111[4X[28X (5,6) --> { source gens --> [ (1,2,3), (1,3,2) ] }[128X[104X112[4X[28X (6,7) --> { source gens --> [ (1,2,3), (1,3,2) ] }[128X[104X113[4X[28X These 2 automorphisms generate the group of automorphisms.[128X[104X114[4X[28X[128X[104X115[4X[25Xgap>[125X [27XmorX4 := MorphismOfInducedXMod( indX4 );[127X[104X116[4X[28X[[a4->s4] => [a4/ker->s3b]][128X[104X117[4X[28X[128X[104X118[4X[32X[104X119120[33X[0;0YFor a second, injective example we take for [22Xmathcal X[122X a conjugation crossed121module.[133X122123[4X[32X Example [32X[104X124[4X[28X[128X[104X125[4X[25Xgap>[125X [27Xd8 := Subgroup( d16, [ b1^2, b2 ] ); SetName( d8, "d8" ); [127X[104X126[4X[28XGroup([ (11,13,15,17)(12,14,16,18), (12,18)(13,17)(14,16) ])[128X[104X127[4X[25Xgap>[125X [27Xc4 := Subgroup( d8, [ b1^2 ] ); SetName( c4, "c4" ); [127X[104X128[4X[28XGroup([ (11,13,15,17)(12,14,16,18) ])[128X[104X129[4X[25Xgap>[125X [27XY16 := XModByNormalSubgroup( d16, d8 ); [127X[104X130[4X[28X[d8->d16][128X[104X131[4X[25Xgap>[125X [27XY8 := SubXMod( Y16, c4, d8 ); [127X[104X132[4X[28X[c4->d8][128X[104X133[4X[25Xgap>[125X [27Xinc8 := InclusionMorphism2DimensionalDomains( Y16, Y8 ); [127X[104X134[4X[28X[[c4->d8] => [d8->d16]][128X[104X135[4X[25Xgap>[125X [27Xincd8 := RangeHom( inc8 );;[127X[104X136[4X[25Xgap>[125X [27XindY8 := InducedXMod( Y8, incd8 );[127X[104X137[4X[28X#I induced group has Size: 16[128X[104X138[4X[28X#I factor 2 is abelian with invariants: [ 4, 4 ][128X[104X139[4X[28Xi*([c4->d8])[128X[104X140[4X[25Xgap>[125X [27XmorY8 := MorphismOfInducedXMod( indY8 );[127X[104X141[4X[28X[[c4->d8] => i*([c4->d8])][128X[104X142[4X[28X[128X[104X143[4X[32X[104X144145[33X[0;0YFor a third example we take the identity mapping on [10Xs3c[110X as boundary, and the146inclusion of [10Xs3c[110X in [10Xs4[110X as [22Xι[122X. The induced group is a general linear group147[10XGL(2,3)[110X.[133X148149[4X[32X Example [32X[104X150[4X[28X[128X[104X151[4X[25Xgap>[125X [27Xs3c := Subgroup( s4, [ (2,3), (3,4) ] );; [127X[104X152[4X[25Xgap>[125X [27XSetName( s3c, "s3c" );[127X[104X153[4X[25Xgap>[125X [27XindXs3c := InducedXMod( s4, s3c, s3c );[127X[104X154[4X[28X#I induced group has Size: 48[128X[104X155[4X[28Xi*([s3c->s3c])[128X[104X156[4X[25Xgap>[125X [27XStructureDescription( indXs3c );[127X[104X157[4X[28X[ "GL(2,3)", "S4" ][128X[104X158[4X[28X[128X[104X159[4X[32X[104X160161[1X7.2-2 AllInducedXMods[101X162163[29X[2XAllInducedXMods[102X( [3XQ[103X ) [32X operation164165[33X[0;0YThis function calculates all the induced crossed modules [10XInducedXMod( Q, P,166M )[110X, where [10XP[110X runs over all conjugacy classes of subgroups of [10XQ[110X and [10XM[110X runs167over all non-trivial subgroups of [10XP[110X.[133X168169170171