CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download
Project: am_PS3_1
Views: 421
Image: ubuntu2204
Kernel: SageMath 10.1

[x=5y+9]\displaystyle \left[x = -5 \, y + 9\right]

Analiza matematyczna - PS

Informatyka, sem.I, studia niestacjonarne I stopnia, 2023/24

Lista nr 1: Funkcje jednej zmiennej. Własności funkcji

Zad. 1. Sprawdzić, czy podane funkcje są rosnące na wskazanych zbiorach:

a) f(x)=x2, x0;)f(x)=x^2,\ x\in \langle 0;\infty)

b) g(x)=1x4+1, x(;0g(x)=\displaystyle\frac{1}{x^4+1},\ x\in(-\infty;0\rangle

c) h(x)=x3, x(;0;h(x)=\sqrt[3]{x},\ x\in(-\infty;0\rangle;

d) p(x)=x+1, x1;)p(x)=\sqrt{x+1},\ x\in\langle -1;\infty)

#a x1,x2 = var('x1,x2') assume(x1<x2, x1>=0) f(x) = x^2 bool(f(x1)<f(x2))
Image in a Jupyter notebook
#b forget() x1,x2 = var('x1,x2') assume(x1<x2, x2<=0) f(x) = 1/(x^4+1) bool(f(x1)<f(x2))
True
#c forget() x1,x2 = var('x1,x2') assume(x1<x2, x2<=0) f(x) = x**(1/3) show(bool(f(x1)<f(x2))) show(plot(f(x))) #sagemath się wykłada

False\displaystyle \mathrm{False}

verbose 0 (3935: plot.py, generate_plot_points) WARNING: When plotting, failed to evaluate function at 100 points. verbose 0 (3935: plot.py, generate_plot_points) Last error message: 'Unable to compute f(-0.001334360219118633)'
Image in a Jupyter notebook
#d forget() x1,x2 = var('x1,x2') assume(x1<x2, x1>=-1) f(x) = (x+1)**(1/2) bool(f(x1)-f(x2)<0)
False

Zad. 2. Sprawdzić, czy podane funkcje są malejące na wskazanych zbiorach:

a) f(x)=34x, xRf(x)=3-4x,\ x\in\mathbb{R}

b) g(x)=x22x, x(;1g(x)=x^2-2x,\ x\in(-\infty;1\rangle

c) h(x)=11+x2, x0;)h(x)=\displaystyle\frac{1}{1+x^2},\ x\in\langle 0;\infty)

d) p(x)=11+x, x(;1)p(x)=\displaystyle\frac{1}{1+x},\ x\in(-\infty;-1)

#a forget() x1,x2 = var('x1,x2') assume(x1<x2) f(x) = 3-4*x bool(f(x1)>f(x2))
True
#b reset() forget() x1,x2 = var('x1,x2') assume(x1<x2, x2<=0) g(x) = x^2-x*2 bool(g(x1)>g(x2))
True
#c forget() x1,x2 = var('x1,x2') assume(x1<x2, x1>0) h(x) = 1/(1+x^2) bool(h(x1)-h(x2)>0)
True
#d forget() x1,x2 = var('x1,x2') assume(x1<x2, x1>-1) p(x) = 1/(1+x) bool(p(x1)-p(x2)>0)
True

Zad. 3. Sprawdzić, czy podane funkcje są różnowartościowe na wskazanych zbiorach:

a) f(x)=x3+1, xRf(x)=x^3+1,\ x\in\mathbb{R}

b) g(x)=1x2, x(;0)g(x)=\displaystyle\frac{1}{x^2},\ x\in(-\infty;0)

c) h(x)=x+1, x0;)h(x)=\sqrt{x}+1,\ x\in\langle 0;\infty)

#a forget() x1,x2 = var('x1,x2') #assume(f(x1)==f(x2)) f(x) = x^3 + 1 # równoważnoc implikacji a=>b <=> ~a=>~b show(bool(x1==x2)) #assume(x1==x2) #show(bool(f(x1)==f(x2))) show(solve(f(x1)==f(x2),x1))

False\displaystyle \mathrm{False}

[x1=12x2(i31),x1=12x2(i3+1),x1=x2]\displaystyle \left[x_{1} = \frac{1}{2} \, x_{2} {\left(i \, \sqrt{3} - 1\right)}, x_{1} = -\frac{1}{2} \, x_{2} {\left(i \, \sqrt{3} + 1\right)}, x_{1} = x_{2}\right]

#b forget() x1,x2 = var('x1,x2') assume(x1!=x2, x1<0) g(x) = 1/(x^2) bool(g(x1)!=g(x2))
False
#c forget() x1,x2 = var('x1,x2') assume(x1!=x2, x1>=0) g(x) = x**1/2 + 1 bool(g(x1)!=g(x2))
True

Zad. 4. Sprawdzić, które z podanych funkcji są parzyste, a które nieparzyste:

a) f(x)=x43x2+1\displaystyle f(x)=x^4-3x^2+1

b) g(x)=2x+2x\displaystyle g(x)=2^x+2^{-x}

c) h(x)=sinx\displaystyle h(x)=|\sin x|

d) p(x)=sinxx3\displaystyle p(x)=\frac{\sin x}{x^3}

e) f(x)=2+x2x5,\displaystyle f(x)=\frac{2+x^2}{x^5},

f) g(x)=sin3x\displaystyle g(x)=\sin^3 x

g) h(x)=3x3x\displaystyle h(x)=3^x-3^{-x}

h) p(x)=xx\displaystyle p(x)=x|x|

#a forget() x1,x2 = var('x1,x2') assume(x1==-x2) g(x) = x^4 -3*x^2 + 1 bool(g(x1)==g(x2))
True
#b forget() x1,x2 = var('x1,x2') assume(x1==-x2) g(x) = 2^x -2^-x print(bool(g(x1)==g(x2))) print(bool(g(x1)==-g(-x2)))
False False
#c forget() x1,x2 = var('x1,x2') assume(x1==-x2) g(x) = abs(sin(x)) bool(g(x1)==-g(-x2))
False
#d forget() x1,x2 = var('x1,x2') assume(x1==-x2) g(x) = sin(x)/(x^3) bool(g(x1)==-g(-x2))
False

Zad. 5. Określić funkcje złożone fff\circ f, fgf\circ g, gfg\circ f, ggg\circ g oraz ich dziedziny, jeżeli:

a) f(x)=x, g(x)=3x+2\displaystyle f(x)=|x|, \ g(x)=-3x+2

b) f(x)=x, g(x)=x3+1\displaystyle f(x)=\sqrt{x},\ g(x)=x^3+1

c) f(x)=x2, g(x)=x,\displaystyle f(x)=x^2,\ g(x)=\sqrt{x},

d) f(x)=2x, g(x)=cosx\displaystyle f(x)=2^x,\ g(x)=\cos x

e) f(x)=x3, g(x)=1x3\displaystyle f(x)=x^3,\ g(x)=\frac{1}{\sqrt[3]{x}}

f) f(x)=x1+x2, g(x)=1x,\displaystyle f(x)=\frac{x}{1+x^2},\ g(x)=\frac{1}{x},

g) f(x)=logx, g(x)=x2+1.\displaystyle f(x)=\log x,\ g(x)=x^2+1.

#a forget() x1,x2 = var('x1,x2') assume(x1==-x2) f(x) = abs(x) g(x) = -3*x+2 ff(x) = f(f(x)) show(ff(x)) #x nalezy do R #y nalezy do +R fg(x) = f(g(x)) show(fg(x)) #x nalezy do R #y nalezy do R gf(x) = g(f(x)) show(gf(x)) #x nalezy do R #y nalezy do R>-1 gg(x) = g(g(x)) show(gg(x))

x\displaystyle {\left| x \right|}

3x+2\displaystyle {\left| -3 \, x + 2 \right|}

3x+2\displaystyle -3 \, {\left| x \right|} + 2

9x4\displaystyle 9 \, x - 4

#b forget() x1,x2 = var('x1,x2') assume(x1==-x2) f(x) = sqrt(x) g(x) = x^3 + 1 ff(x) = f(f(x)) show(ff(x)) fg(x) = f(g(x)) show(fg(x)) gf(x) = g(f(x)) show(gf(x)) gg(x) = g(g(x)) show(gg(x))

x14\displaystyle x^{\frac{1}{4}}

x3+1\displaystyle \sqrt{x^{3} + 1}

x32+1\displaystyle x^{\frac{3}{2}} + 1

(x3+1)3+1\displaystyle {\left(x^{3} + 1\right)}^{3} + 1

#c forget() x1,x2 = var('x1,x2') assume(x1==-x2) f(x) = x^2 g(x) = sqrt(x) ff(x) = f(f(x)) show(ff(x)) fg(x) = f(g(x)) show(fg(x)) gf(x) = g(f(x)) show(gf(x)) gg(x) = g(g(x)) show(gg(x))

x4\displaystyle x^{4}

x\displaystyle x

x2\displaystyle \sqrt{x^{2}}

x14\displaystyle x^{\frac{1}{4}}

#d forget() x1,x2 = var('x1,x2') assume(x1==-x2) f(x) = 2**x g(x) = cos(x) ff(x) = f(f(x)) show(ff(x)) fg(x) = f(g(x)) show(fg(x)) gf(x) = g(f(x)) show(gf(x)) gg(x) = g(g(x)) show(gg(x))

2(2x)\displaystyle 2^{\left(2^{x}\right)}

2cos(x)\displaystyle 2^{\cos\left(x\right)}

cos(2x)\displaystyle \cos\left(2^{x}\right)

cos(cos(x))\displaystyle \cos\left(\cos\left(x\right)\right)

#e ???? potegasx forget() x1,x2 = var('x1,x2') assume(x1==-x2) f(x) = x^3 g(x) = 1/(x**(1/3)) ff(x) = f(f(x)) show(ff(x)) fg(x) = f(g(x)) show(fg(x)) gf(x) = g(f(x)) show(gf(x)) gg(x) = g(g(x)) show(gg(x))

x9\displaystyle x^{9}

1x\displaystyle \frac{1}{x}

1(x3)13\displaystyle \frac{1}{{\left(x^{3}\right)}^{\frac{1}{3}}}

x19\displaystyle x^{\frac{1}{9}}

#f forget() x = var('x') f(x) = x/(1+x^2) g(x) = 1/x ff(x) = f(f(x)) show(ff(x)) fg(x) = f(g(x)) show(fg(x)) gf(x) = g(f(x)) show(gf(x)) gg(x) = g(g(x)) show(gg(x))

x(x2+1)(x2(x2+1)2+1)\displaystyle \frac{x}{{\left(x^{2} + 1\right)} {\left(\frac{x^{2}}{{\left(x^{2} + 1\right)}^{2}} + 1\right)}}

1x(1x2+1)\displaystyle \frac{1}{x {\left(\frac{1}{x^{2}} + 1\right)}}

x2+1x\displaystyle \frac{x^{2} + 1}{x}

x\displaystyle x

#g forget() x1,x2 = var('x1,x2') assume(x1==-x2) f(x) = log(x) g(x) = x^2 + 1 ff(x) = f(f(x)) show(ff(x)) #x nalezy do +R (0,niesk) i log(x) > 0 wiec x > 1 (1,niesk) fg(x) = f(g(x)) show(fg(x)) #x nalezy do R gf(x) = g(f(x)) show(gf(x)) #x nalezy do R (0,niesk) gg(x) = g(g(x)) show(gg(x)) #x nalezy do R

log(log(x))\displaystyle \log\left(\log\left(x\right)\right)

log(x2+1)\displaystyle \log\left(x^{2} + 1\right)

log(x)2+1\displaystyle \log\left(x\right)^{2} + 1

(x2+1)2+1\displaystyle {\left(x^{2} + 1\right)}^{2} + 1

Zad. 6. Znaleźć funkcję odwrotną do podanej:

a) f(x)=x22x, x1;)\displaystyle f(x)=x^2-2x,\ x\in\langle 1;\infty)

b) g(x)=2x+15, xR\displaystyle g(x)=2-\sqrt[5]{x+1},\ x\in\mathbb{R}

c) h(x)=x3x, xR,\displaystyle h(x)=x^3|x|,\ x\in\mathbb{R},

d) p(x)={3x dla x<05x dla x0, xR\displaystyle p(x)=\left\{ \begin{array}{rrr} 3^x & \mbox{ dla } &x<0\\ 5^x & \mbox{ dla } &x\geqslant 0 \end{array}\right. ,\ x\in\mathbb{R}

e) f(x)=13x\displaystyle f(x)=1-3^{-x}

f) g(x)=x5+3,\displaystyle g(x)=x^5+\sqrt{3},

g) h(x)=x6sgnx\displaystyle h(x)=x^6\mathrm{sgn\,}x

h) q(x)={x2 dla x<02+x dla x0, xR\displaystyle q(x)=\left\{ \begin{array}{rrr} -x^2 & \mbox{ dla } &x<0\\ 2+x & \mbox{ dla } &x\geqslant 0 \end{array}\right. ,\ x\in\mathbb{R}

i) f(x)=x1+x.\displaystyle f(x)=\frac{x}{1+|x|}.

#a forget() x,y = var('x,y') assume(x>1) f(x) = x^2 - 2*x show(solve(y==f(x),x)) #f do -1 (x) = sqrt(x+1)+1 dla x>=-1

[x=y+1+1]\displaystyle \left[x = \sqrt{y + 1} + 1\right]

#b potega z wykladnikiem ? forget() x,y = var('x,y') assume(x>1) f(x) = 2 - (x+1)**1/5 show(solve(y==f(x),x)) #f do -1 (x) = sqrt(x+1)+1 dla x>=-1

[x=5y+9]\displaystyle \left[x = -5 \, y + 9\right]

#c forget() x,y = var('x,y') f(x) = (x^3 * abs(x)) show(solve(y==f(x),x))

[x3=yx]\displaystyle \left[x^{3} = \frac{y}{{\left| x \right|}}\right]

#d forget() x = var('x') assume(x<0) p1(x) = 3^x show(solve(y==p1(x),x)) forget() assume(x>0) p2(x) = 5^x show(solve(y==p2(x),x)) #y=log trojkowy x, y<1 #analogicznie

[x=log(y)log(3)]\displaystyle \left[x = \frac{\log\left(y\right)}{\log\left(3\right)}\right]

[x=log(y)log(5)]\displaystyle \left[x = \frac{\log\left(y\right)}{\log\left(5\right)}\right]

#e forget() x,y = var('x,y') f(x) = 1 - 3^-x show(solve(y==f(x),x))

[x=log(1y1)log(3)]\displaystyle \left[x = \frac{\log\left(-\frac{1}{y - 1}\right)}{\log\left(3\right)}\right]

#f forget() x,y = var('x,y') f(x) = x^5 + sqrt(3) show(solve(y==f(x),x))

[x=14(y3)15(5+i25+101),x=14(y3)15(5i25+10+1),x=14(y3)15(5+i25+10+1),x=14(y3)15(5i25+101),x=(y3)15]\displaystyle \left[x = \frac{1}{4} \, {\left(y - \sqrt{3}\right)}^{\frac{1}{5}} {\left(\sqrt{5} + i \, \sqrt{2 \, \sqrt{5} + 10} - 1\right)}, x = -\frac{1}{4} \, {\left(y - \sqrt{3}\right)}^{\frac{1}{5}} {\left(\sqrt{5} - i \, \sqrt{-2 \, \sqrt{5} + 10} + 1\right)}, x = -\frac{1}{4} \, {\left(y - \sqrt{3}\right)}^{\frac{1}{5}} {\left(\sqrt{5} + i \, \sqrt{-2 \, \sqrt{5} + 10} + 1\right)}, x = \frac{1}{4} \, {\left(y - \sqrt{3}\right)}^{\frac{1}{5}} {\left(\sqrt{5} - i \, \sqrt{2 \, \sqrt{5} + 10} - 1\right)}, x = {\left(y - \sqrt{3}\right)}^{\frac{1}{5}}\right]

#g forget() x,y = var('x,y') f(x) = x^6 + sign(x) show(solve(y==f(x),x))

[x=12(ysgn(x))16(i3+1),x=12(ysgn(x))16(i31),x=(ysgn(x))16,x=12(ysgn(x))16(i3+1),x=12(ysgn(x))16(i31),x=(ysgn(x))16]\displaystyle \left[x = \frac{1}{2} \, {\left(y - \mathrm{sgn}\left(x\right)\right)}^{\frac{1}{6}} {\left(i \, \sqrt{3} + 1\right)}, x = \frac{1}{2} \, {\left(y - \mathrm{sgn}\left(x\right)\right)}^{\frac{1}{6}} {\left(i \, \sqrt{3} - 1\right)}, x = -{\left(y - \mathrm{sgn}\left(x\right)\right)}^{\frac{1}{6}}, x = -\frac{1}{2} \, {\left(y - \mathrm{sgn}\left(x\right)\right)}^{\frac{1}{6}} {\left(i \, \sqrt{3} + 1\right)}, x = -\frac{1}{2} \, {\left(y - \mathrm{sgn}\left(x\right)\right)}^{\frac{1}{6}} {\left(i \, \sqrt{3} - 1\right)}, x = {\left(y - \mathrm{sgn}\left(x\right)\right)}^{\frac{1}{6}}\right]

#h forget() assume(x<0) p1(x) = (-x)^2 show(solve(y==p1(x),x)) forget() assume(x>0) p2(x) = 2 + x show(solve(y==p2(x),x))

[x=y]\displaystyle \left[x = -\sqrt{y}\right]

[x=y2]\displaystyle \left[x = y - 2\right]

#i forget() x,y = var('x,y') f(x) = x/(1+abs(x)) show(solve(y==f(x),x))

[x=yx+y]\displaystyle \left[x = y {\left| x \right|} + y\right]