Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
Project: Testing 18.04
Path: r-conjoint.ipynb
Views: 307Kernel: R (R-Project)
R "conjoint" on CoCalc
Kernel: R (R-Project)
In [1]:
Out[1]:
[1] ‘1.41’
In [6]:
Out[6]:
K-means clustering with 3 clusters of sizes 28, 32, 40
Cluster means:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
1 3.608429 5.280036 5.180036 4.372714 4.272893 5.084571 5.227429 5.870571
2 4.426031 5.382906 3.026656 6.713531 6.201656 2.544812 3.751062 1.426625
3 5.480275 2.938100 1.368100 4.540275 1.973100 3.782900 1.382900 0.965750
[,9] [,10] [,11] [,12] [,13]
1 3.856286 5.2851429 4.720571 5.991714 5.106000
2 1.757875 0.9967187 6.401625 6.038562 6.644812
3 2.820750 0.1112250 3.450750 0.442900 0.692900
Clustering vector:
[1] 2 1 2 1 1 3 2 1 2 2 2 2 3 3 3 3 1 3 1 3 3 2 3 1 2 2 1 2 1 1 3 2 1 2 2 2 2
[38] 3 3 3 3 1 3 1 3 2 2 3 3 3 2 3 3 3 1 2 3 1 3 1 3 3 2 1 1 2 3 3 3 1 2 3 2 1
[75] 2 1 1 3 2 2 1 2 1 2 3 3 3 3 1 3 1 3 1 3 3 2 3 1 2 2
Within cluster sum of squares by cluster:
[1] 1949.076 1903.595 1605.654
(between_SS / total_SS = 41.1 %)
Available components:
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"
In [3]:
Out[3]:
Loading required package: fpc
K-means clustering with 3 clusters of sizes 28, 32, 40
Cluster means:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
1 3.608429 5.280036 5.180036 4.372714 4.272893 5.084571 5.227429 5.870571
2 4.426031 5.382906 3.026656 6.713531 6.201656 2.544812 3.751062 1.426625
3 5.480275 2.938100 1.368100 4.540275 1.973100 3.782900 1.382900 0.965750
[,9] [,10] [,11] [,12] [,13]
1 3.856286 5.2851429 4.720571 5.991714 5.106000
2 1.757875 0.9967187 6.401625 6.038562 6.644812
3 2.820750 0.1112250 3.450750 0.442900 0.692900
Clustering vector:
[1] 2 1 2 1 1 3 2 1 2 2 2 2 3 3 3 3 1 3 1 3 3 2 3 1 2 2 1 2 1 1 3 2 1 2 2 2 2
[38] 3 3 3 3 1 3 1 3 2 2 3 3 3 2 3 3 3 1 2 3 1 3 1 3 3 2 1 1 2 3 3 3 1 2 3 2 1
[75] 2 1 1 3 2 2 1 2 1 2 3 3 3 3 1 3 1 3 1 3 3 2 3 1 2 2
Within cluster sum of squares by cluster:
[1] 1949.076 1903.595 1605.654
(between_SS / total_SS = 41.1 %)
Available components:
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"
In [4]:
Out[4]:
[1] "Preferences of all respondents (preferences as ranking data):"
Call:
lm(formula = frml)
Residuals:
Min 1Q Median 3Q Max
-3,9444 -1,6944 0,0833 1,3333 5,6944
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5,3472 0,3747 14,269 <2e-16 ***
factor(x$flavour)1 -0,2222 0,4740 -0,469 0,6414
factor(x$flavour)2 0,7222 0,4740 1,524 0,1343
factor(x$price)1 0,8333 0,4740 1,758 0,0853 .
factor(x$price)2 -0,3333 0,4740 -0,703 0,4854
factor(x$container)1 0,9167 0,3555 2,578 0,0131 *
factor(x$topping)1 -0,1250 0,3555 -0,352 0,7267
---
Signif. codes: 0 ‘***’ 0,001 ‘**’ 0,01 ‘*’ 0,05 ‘.’ 0,1 ‘ ’ 1
Residual standard error: 2,463 on 47 degrees of freedom
Multiple R-squared: 0,2079, Adjusted R-squared: 0,1068
F-statistic: 2,057 on 6 and 47 DF, p-value: 0,07656
[1] "Part worths (utilities) of levels (model parameters for whole sample):"
levnms utls
1 intercept 5,3472
2 chocolate -0,2222
3 vanilla 0,7222
4 strawberry -0,5
5 $1.50 0,8333
6 $2.00 -0,3333
7 $2.50 -0,5
8 cone 0,9167
9 cup -0,9167
10 yes -0,125
11 no 0,125
[1] "Average importance of factors (attributes):"
[1] 35,13 31,39 20,43 13,05
[1] Sum of average importance: 100
[1] "Chart of average factors importance"
In [5]:
Out[5]:
[1] "Preferences of all respondents (preferences as rating data):"
Call:
lm(formula = frml)
Residuals:
Min 1Q Median 3Q Max
-5,1888 -2,3761 -0,7512 2,2128 7,5134
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3,55336 0,09068 39,184 < 2e-16 ***
factor(x$price)1 0,24023 0,13245 1,814 0,070 .
factor(x$price)2 -0,14311 0,11485 -1,246 0,213
factor(x$variety)1 0,61489 0,11485 5,354 1,02e-07 ***
factor(x$variety)2 0,03489 0,11485 0,304 0,761
factor(x$kind)1 0,13689 0,11485 1,192 0,234
factor(x$kind)2 -0,88977 0,13245 -6,718 2,76e-11 ***
factor(x$aroma)1 0,41078 0,08492 4,837 1,48e-06 ***
---
Signif. codes: 0 ‘***’ 0,001 ‘**’ 0,01 ‘*’ 0,05 ‘.’ 0,1 ‘ ’ 1
Residual standard error: 2,967 on 1292 degrees of freedom
Multiple R-squared: 0,09003, Adjusted R-squared: 0,0851
F-statistic: 18,26 on 7 and 1292 DF, p-value: < 2,2e-16
[1] "Part worths (utilities) of levels (model parameters for whole sample):"
levnms utls
1 intercept 3,5534
2 low 0,2402
3 medium -0,1431
4 high -0,0971
5 black 0,6149
6 green 0,0349
7 red -0,6498
8 bags 0,1369
9 granulated -0,8898
10 leafy 0,7529
11 yes 0,4108
12 no -0,4108
[1] "Average importance of factors (attributes):"
[1] 24,76 32,22 27,15 15,88
[1] Sum of average importance: 100,01
[1] "Chart of average factors importance"
In [0]: