Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
105 views
ubuntu2204
Kernel: SageMath 10.0

Function Analysis Part 1 Assignment

Analyze the following functions using the steps from class.

Some steps have been done for you - make sure you run the function definitions again.

Question 1

[5 points] f(x)=9x−1x2+110\quad\displaystyle f(x)=\frac{9x-1}{x^2+110}

f(x)=(9*x-1)/(x^2+110) show(f(x))

9 x−1x2+110\displaystyle \frac{9 \, x - 1}{x^{2} + 110}

Step 1: Find the domain of ff.

The domain is R\R.

Step 2: Find the derivative f′f'.

df(x)=derivative(f(x),x) show(df(x))

−2 (9 x−1)x(x2+110)2+9x2+110\displaystyle -\frac{2 \, {\left(9 \, x - 1\right)} x}{{\left(x^{2} + 110\right)}^{2}} + \frac{9}{x^{2} + 110}

Step 3: Find the critical points of ff (where f′f' is 00 or undefined).

solve(df(x)==0,x)
[x == -1/9*sqrt(8911) + 1/9, x == 1/9*sqrt(8911) + 1/9]

You should convert the solutions above to decimal.

N(-1/9*sqrt(8911)+1/9)
-10.3775659112312
N(1/9*sqrt(8911)+1/9)
10.5997881334535

Step 4: See if the sign of f′f' actually changes at the critical points of ff, and determine whether ff has a local maximum or local minimum at these points.

df(-10.5)
-0.000479282004635637
df(-10.3)
0.000312453902207771
df(10.45)
0.000584342440431880
df(10.7)
-0.000377214272833236

Step 5: Find the second derivative f′′f''.

d2f(x)=derivative(f(x),x,2) show(d2f(x))

8 (9 x−1)x2(x2+110)3−2 (9 x−1)(x2+110)2−36 x(x2+110)2\displaystyle \frac{8 \, {\left(9 \, x - 1\right)} x^{2}}{{\left(x^{2} + 110\right)}^{3}} - \frac{2 \, {\left(9 \, x - 1\right)}}{{\left(x^{2} + 110\right)}^{2}} - \frac{36 \, x}{{\left(x^{2} + 110\right)}^{2}}

Step 6: Find the critical points of f′f' (where f′′f'' is 00 or undefined).

solve(d2f(x)==0,x)
[x == -1/2*(8911/81*I*sqrt(110) + 8911/729)^(1/3)*(I*sqrt(3) + 1) - 8911/162*(-I*sqrt(3) + 1)/(8911/81*I*sqrt(110) + 8911/729)^(1/3) + 1/9, x == -1/2*(8911/81*I*sqrt(110) + 8911/729)^(1/3)*(-I*sqrt(3) + 1) - 8911/162*(I*sqrt(3) + 1)/(8911/81*I*sqrt(110) + 8911/729)^(1/3) + 1/9, x == (8911/81*I*sqrt(110) + 8911/729)^(1/3) + 8911/81/(8911/81*I*sqrt(110) + 8911/729)^(1/3) + 1/9]

You should convert the solutions above to decimal.

N(-1/2*(8911/81*I*sqrt(110) + 8911/729)^(1/3)*(I*sqrt(3) +1)-8911/162*(-I*sqrt(3) +1)/(8911/81*I*sqrt(110) + 8911/729)^(1/3)+ 1/9)
0.0370358054710737 + 5.32907051820075e-15*I
N(-1/2*(8911/81*I*sqrt(110) + 8911/729)^(1/3)*(I*sqrt(3) +1)-8911/162*(-I*sqrt(3) +1)/(8911/81*I*sqrt(110) + 8911/729)^(1/3)+ 1/9)
0.0370358054710737 + 5.32907051820075e-15*I
N(-1/2*(8911/81*I*sqrt(110) + 8911/729)^(1/3)*(I*sqrt(3) +1)-8911/162*(-I*sqrt(3) +1)/(8911/81*I*sqrt(110) + 8911/729)^(1/3)+ 1/9)
0.0370358054710737 + 5.32907051820075e-15*I
N(1/6*sqrt(39)+1)
2.04083299973307
N(-1/6*sqrt(39)+1)
-0.0408329997330663

Step 7: See if the sign of f′′f'' actually changes at the critical points of f′f', and determine whether ff has an inflection point at these points.

d2f(0) N(1/6050)
0.000165289256198347
d2f(0.1)
-0.000280946661976095
d2f(-18.2)
-0.0000253027535196296
d2f(-17.2)
0.000134953803168578
d2f(18.1)
-0.0000301219469454848
d2f(18.4)
0.0000113426926653792
#inflection points at x=-18.02, 0.037, 18.31

Step 8: Find the xx- and yy-intercepts.

solve(f(x)==0,x)
[x == (1/9)]
f(0)
-1/110

Step 9: Determine the end behavior.

limit(f(x),x=infinity)
0
limit(f(x),x=-infinity)
0

Step 10: Make an informed graph. Mark any xx- and yy-intercepts, relative maxima and minima, and inflection points.

f(-10.38)
-0.433627684569615
f(10.6)
f(0.037)
f(-18.02)
f(18.31)
plot (f(x), xmin=-100, xmax=100, ymin=-0.5, ymax=0.5)+point([(-10.38,-0.43), (10.60,0.42), (0.037, -0.006), (-18.02, -0.375), (18.31, 0.368), (1/9,0),(0, -1/110)], color='black', size=20)
Image in a Jupyter notebook

Step 11: Discuss absolute max/min, increasing/decreasing, concave up/down.

#Absolute Max=0.42, at x=10.60 #Absolute Min=-0.43, at x=10.38 #inc (-10.38, 10.60) #dec (-infinity, -10.38) (10.60, infinity) #cu (-18.02, 0.037), (18.31, infinity) #cd (-infinity, -18.02), (0.037, 18.31)

Question 2

[5 points] g(x)=2x4−8x3−x2+30x\quad g(x)=2x^4-8x^3-x^2+30x

g(x)=2*x^4-8*x^3-x^2+30*x show(g(x))

2 x4−8 x3−x2+30 x\displaystyle 2 \, x^{4} - 8 \, x^{3} - x^{2} + 30 \, x

Step 1: Find the domain of gg.

The domain is R\R.

Step 2: Find the derivative g′g'.

dg(x)=derivative(g(x),x) show(dg(x))

8 x3−24 x2−2 x+30\displaystyle 8 \, x^{3} - 24 \, x^{2} - 2 \, x + 30

Step 3: Find the critical points of gg (where g′g' is 00 or undefined).

solve(dg(x)==0,x)
[x == (5/2), x == -1, x == (3/2)]

Step 4: See if the sign of g′g' actually changes at the critical points of gg, and determine whether gg has a local maximum or local minimum at these points.

dg(2)
-6
dg(3)
24
dg(1)
dg(2)
-6
dg(-1.5)
dg(-0.5)
24.0000000000000

Step 5: Find the second derivative g′′g''.

d2g(x)=derivative(g(x),x,2) show(d2g(x))

24 x2−48 x−2\displaystyle 24 \, x^{2} - 48 \, x - 2

Step 6: Find the critical points of g′g' (where g′′g'' is 00 or undefined).

solve(d2g(x)==0,x)
[x == -1/6*sqrt(39) + 1, x == 1/6*sqrt(39) + 1]
N(-1/6*sqrt(39)+1)
-0.0408329997330663
N(1/6 *sqrt(39)+1)
2.04083299973307

Step 7: See if the sign of g′′g'' actually changes at the critical points of g′g', and determine whether gg has an inflection point at these points.

d2g(-0.05)
0.460000000000000
d2g(-0.03)
-0.538400000000000
d2g(2)
-2
d2g(3)
70
#inflection point at x=2.041

Step 8: Find the xx- and yy-intercepts.

[Caution: gg has two x-intercepts. When you solve g(x)=0g(x)=0, CoCalc will give you four answers, but only two are real. Convert to decimal, and watch out for scientific notation.]

solve(g(x)==0,x)
[x == -1/6*(7/4)^(1/3)*(9*sqrt(23)*sqrt(2) - 74)^(1/3)*(I*sqrt(3) + 1) - 5/3*(7/4)^(2/3)*(-I*sqrt(3) + 1)/(9*sqrt(23)*sqrt(2) - 74)^(1/3) + 4/3, x == -1/6*(7/4)^(1/3)*(9*sqrt(23)*sqrt(2) - 74)^(1/3)*(-I*sqrt(3) + 1) - 5/3*(7/4)^(2/3)*(I*sqrt(3) + 1)/(9*sqrt(23)*sqrt(2) - 74)^(1/3) + 4/3, x == 1/3*(7/4)^(1/3)*(9*sqrt(23)*sqrt(2) - 74)^(1/3) + 10/3*(7/4)^(2/3)/(9*sqrt(23)*sqrt(2) - 74)^(1/3) + 4/3, x == 0]
g(0)
0
N(-1/6*(7/4)^(1/3)*(9*sqrt(23)*sqrt(2) - 74)^(1/3)*(I*sqrt(3) + 1) - 5/3*(7/4)^(2/3)*(-I*sqrt(3) + 1)/(9*sqrt(23)*sqrt(2) - 74)^(1/3) + 4/3)
2.83551650478519 + 0.967641208530388*I
N( -1/6*(7/4)^(1/3)*(9*sqrt(23)*sqrt(2) - 74)^(1/3)*(-I*sqrt(3) + 1) - 5/3*(7/4)^(2/3)*(I*sqrt(3) + 1)/(9*sqrt(23)*sqrt(2) - 74)^(1/3) + 4/3)
-1.67103300957038 - 2.74364199474365e-17*I
N(1/3*(7/4)^(1/3)*(9*sqrt(23)*sqrt(2) - 74)^(1/3) + 10/3*(7/4)^(2/3)/(9*sqrt(23)*sqrt(2) - 74)^(1/3) + 4/3)
2.83551650478519 - 0.967641208530389*I

Step 9: Determine the end behavior.

limit(g(x), x=infinity)
+Infinity
limit(g(x), x=-infinity)
+Infinity

Step 10: Make an informed graph. Mark any xx- and yy-intercepts, relative maxima and minima, and inflection points.

g(-1)
-21
g(2.5)
21.8750000000000
g(1.5)
25.8750000000000
g(-0.0408)
-1.22511575945134
g(2.0408)
23.7540842405487
plot(g(x),xmin=-2,xmax=4,ymin=-30,ymax=30)+point([(-1,-21),(2.5,21.875),(0,0),(-1.67,0),(1.5,25.875),(-0.0408,-1.225),(2.0408,23.7541)],color='black',size=50)
Image in a Jupyter notebook

Step 11: Discuss absolute max/min, increasing/decreasing, concave up/down.

#Aaron: Here are the correct answers: #no absolute max #absolute min = -21 at x = -1 #increasing: (-1,1.5), (2.5,oo) #decreasing: (-oo,-1), (1.5,2.5) #concave up: (-oo,-0.04), (2.04,oo) #concave down: (-0.04,2.04)