Gauss Sums Argument
Legendre symbol: Dirichlet character modulo 7 of conductor 7 mapping 3 |--> -1
L^2= Dirichlet character modulo 7 of conductor 1 mapping 3 |--> 1
-1/7*sqrt(7)*(2*e^(11/21*I*pi) - 2*e^(3/7*I*pi) - 2*e^(8/21*I*pi) - 2*e^(4/21*I*pi) + 2*e^(1/21*I*pi) + 1)
(2/7*sqrt(7)*cos(10/21*pi) + 2/7*sqrt(7)*cos(3/7*pi) + 2/7*sqrt(7)*cos(8/21*pi) + 2/7*sqrt(7)*cos(4/21*pi) - 2/7*sqrt(7)*cos(1/21*pi) - 1/7*sqrt(7), -2/7*sqrt(7)*sin(10/21*pi) + 2/7*sqrt(7)*sin(3/7*pi) + 2/7*sqrt(7)*sin(8/21*pi) + 2/7*sqrt(7)*sin(4/21*pi) - 2/7*sqrt(7)*sin(1/21*pi))
Numeric values
order= 2 Arg(g(c))= 2.93737402297610e-16 + 1.00000000000000*I
z^4= 0.999999999999999 - 1.17494960919044e-15*I
2 Pi/Arg = 4.00000000000000 4
Cyclotomic Field of order 84 and degree 24
zeta84
Legendre symbol: Dirichlet character modulo 7 of conductor 7 mapping 3 |--> -1
Gauss sum / sqrt(p): -1/7*sqrt(7)*(2*e^(11/21*I*pi) - 2*e^(3/7*I*pi) - 2*e^(8/21*I*pi) - 2*e^(4/21*I*pi) + 2*e^(1/21*I*pi) + 1)
Cyclotomic field of order: 84 snap-grid eps= 0.0249274628508837
p= 7 Quadratic GS= 3.14718645318868e-16 + 1.00000000000000*I
Abs(GS-z^j)= 4.58237264425372e-16 for j= 21 GS order n= 4 i.e. Arg(GS)=2Pi/ 4