1
Compute each of the following Galois groups. Which of these field extensions are normal field extensions? If the extension is not normal, find a normal extension of ${\mathbb Q}$ in which the extension field is contained.
$G({\mathbb Q}(\sqrt{30}\, ) / {\mathbb Q})$
$G({\mathbb Q}(\sqrt[4]{5}\, ) / {\mathbb Q})$
$G( {\mathbb Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}\, )/ {\mathbb Q} )$
$G({\mathbb Q}(\sqrt{2}, \sqrt[3]{2}, i) / {\mathbb Q})$
$G({\mathbb Q}(\sqrt{6}, i) / {\mathbb Q})$
(a) ${\mathbb Z}_2\text{;}$ (c) ${\mathbb Z}_2 \times {\mathbb Z}_2 \times {\mathbb Z}_2\text{.}$