Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

133964 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section17.4Exercises

ΒΆ
1

List all of the polynomials of degree 3 or less in ${\mathbb Z}_2[x]\text{.}$

2

Compute each of the following.

  1. $(5x^2 + 3x - 4) + (4x^2 - x + 9)$ in ${\mathbb Z}_{12}$

  2. $(5x^2 + 3x - 4) (4x^2 - x + 9)$ in ${\mathbb Z}_{12}$

  3. $(7x^3 + 3x^2 - x) + (6x^2 - 8x + 4)$ in ${\mathbb Z}_9$

  4. $(3x^2 + 2x - 4) + (4x^2 + 2)$ in ${\mathbb Z}_5$

  5. $(3x^2 + 2x - 4) (4x^2 + 2)$ in ${\mathbb Z}_5$

  6. $(5x^2 + 3x - 2)^2$ in ${\mathbb Z}_{12}$

Hint

(a) $9x^2 + 2x + 5\text{;}$ (b) $8x^4 + 7x^3 + 2x^2 + 7x\text{.}$

3

Use the division algorithm to find $q(x)$ and $r(x)$ such that $a(x) = q(x) b(x) + r(x)$ with $\deg r(x) \lt \deg b(x)$ for each of the following pairs of polynomials.

  1. $a(x) = 5 x^3 + 6x^2 - 3 x + 4$ and $b(x) = x - 2$ in ${\mathbb Z}_7[x]$

  2. $a(x) = 6 x^4 - 2 x^3 + x^2 - 3 x + 1$ and $b(x) = x^2 + x - 2$ in ${\mathbb Z}_7[x]$

  3. $a(x) = 4 x^5 - x^3 + x^2 + 4$ and $b(x) = x^3 - 2$ in ${\mathbb Z}_5[x]$

  4. $a(x) = x^5 + x^3 -x^2 - x$ and $b(x) = x^3 + x$ in ${\mathbb Z}_2[x]$

Hint

(a) $5 x^3 + 6 x^2 - 3 x + 4 = (5 x^2 + 2x + 1)(x -2) + 6\text{;}$ (c) $4x^5 - x^3 + x^2 + 4 = (4x^2 + 4)(x^3 + 3) + 4x^2 + 2\text{.}$

4

Find the greatest common divisor of each of the following pairs $p(x)$ and $q(x)$ of polynomials. If $d(x) = \gcd( p(x), q(x) )\text{,}$ find two polynomials $a(x)$ and $b(x)$ such that $a(x) p(x) + b(x) q(x) = d(x)\text{.}$

  1. $p(x) = x^3 - 6x^2 + 14x - 15$ and $q(x) = x^3 - 8x^2 + 21x - 18\text{,}$ where $p(x), q(x) \in {\mathbb Q}[x]$

  2. $p(x) = x^3 + x^2 - x + 1$ and $q(x) = x^3 + x - 1\text{,}$ where $p(x), q(x) \in {\mathbb Z}_2[x]$

  3. $p(x) = x^3 + x^2 - 4x + 4$ and $q(x) = x^3 + 3 x -2\text{,}$ where $p(x), q(x) \in {\mathbb Z}_5[x]$

  4. $p(x) = x^3 - 2 x + 4$ and $q(x) = 4 x^3 + x + 3\text{,}$ where $p(x), q(x) \in {\mathbb Q}[x]$

5

Find all of the zeros for each of the following polynomials.

  1. $5x^3 + 4x^2 - x + 9$ in ${\mathbb Z}_{12}$

  2. $3x^3 - 4x^2 - x + 4$ in ${\mathbb Z}_{5}$

  3. $5x^4 + 2x^2 - 3$ in ${\mathbb Z}_{7}$

  4. $x^3 + x + 1$ in ${\mathbb Z}_2$

Hint

(a) No zeros in ${\mathbb Z}_{12}\text{;}$ (c) 3, 4.

6

Find all of the units in ${\mathbb Z}[x]\text{.}$

7

Find a unit $p(x)$ in ${\mathbb Z}_4[x]$ such that $\deg p(x) \gt 1\text{.}$

Hint

Look at $(2x + 1)\text{.}$

8

Which of the following polynomials are irreducible over ${\mathbb Q}[x]\text{?}$

  1. $x^4 - 2x^3 + 2x^2 + x + 4$

  2. $x^4 - 5x^3 + 3x - 2$

  3. $3x^5 - 4x^3 - 6x^2 + 6$

  4. $5x^5 - 6x^4 - 3x^2 + 9 x - 15$

Hint

(a) Reducible; (c) irreducible.

9

Find all of the irreducible polynomials of degrees 2 and 3 in ${\mathbb Z}_2[x]\text{.}$

10

Give two different factorizations of $x^2 + x + 8$ in ${\mathbb Z}_{10}[x]\text{.}$

Hint

One factorization is $x^2 + x + 8 = (x + 2)(x + 9)\text{.}$

11

Prove or disprove: There exists a polynomial $p(x)$ in ${\mathbb Z}_6[x]$ of degree $n$ with more than $n$ distinct zeros.

12

If $F$ is a field, show that $F[x_1, \ldots, x_n]$ is an integral domain.

13

Show that the division algorithm does not hold for ${\mathbb Z}[x]\text{.}$ Why does it fail?

Hint

The integers $\mathbb Z$ do not form a field.

14

Prove or disprove: $x^p + a$ is irreducible for any $a \in {\mathbb Z}_p\text{,}$ where $p$ is prime.

Hint

False.

15

Let $f(x)$ be irreducible in $F[x]\text{,}$ where $F$ is a field. If $f(x) \mid p(x)q(x)\text{,}$ prove that either $f(x) \mid p(x)$ or $f(x) \mid q(x)\text{.}$

16

Suppose that $R$ and $S$ are isomorphic rings. Prove that $R[x] \cong S[x]\text{.}$

Hint

Let $\phi : R \rightarrow S$ be an isomorphism. Define $\overline{\phi} : R[x] \rightarrow S[x]$ by $\overline{\phi}(a_0 + a_1 x + \cdots + a_n x^n) = \phi(a_0) + \phi(a_1) x + \cdots + \phi(a_n) x^n\text{.}$

17

Let $F$ be a field and $a \in F\text{.}$ If $p(x) \in F[x]\text{,}$ show that $p(a)$ is the remainder obtained when $p(x)$ is divided by $x - a\text{.}$

18The Rational Root Theorem

Let

\begin{equation*} p(x) = a_n x^n + a_{n - 1}x^{n - 1} + \cdots + a_0 \in \mathbb Z[x], \end{equation*}

where $a_n \neq 0\text{.}$ Prove that if $p(r/s) = 0\text{,}$ where $\gcd(r, s) = 1\text{,}$ then $r \mid a_0$ and $s \mid a_n\text{.}$

19

Let ${\mathbb Q}^*$ be the multiplicative group of positive rational numbers. Prove that ${\mathbb Q}^*$ is isomorphic to $( {\mathbb Z}[x], +)\text{.}$

20Cyclotomic Polynomials

The polynomial

\begin{equation*} \Phi_n(x) = \frac{x^n - 1}{x - 1} = x^{n - 1} + x^{n - 2} + \cdots + x + 1 \end{equation*}

is called the Show that $\Phi_p(x)$ is irreducible over ${\mathbb Q}$ for any prime $p\text{.}$

Hint

The polynomial

\begin{equation*} \Phi_n(x) = \frac{x^n - 1}{x - 1} = x^{n - 1} + x^{n - 2} + \cdots + x + 1 \end{equation*}

is called the Show that $\Phi_p(x)$ is irreducible over ${\mathbb Q}$ for any prime $p\text{.}$

21

If $F$ is a field, show that there are infinitely many irreducible polynomials in $F[x]\text{.}$

22

Let $R$ be a commutative ring with identity. Prove that multiplication is commutative in $R[x]\text{.}$

23

Let $R$ be a commutative ring with identity. Prove that multiplication is distributive in $R[x]\text{.}$

24

Show that $x^p - x$ has $p$ distinct zeros in ${\mathbb Z}_p\text{,}$ for any prime $p\text{.}$ Conclude that

\begin{equation*} x^p - x = x(x - 1)(x - 2) \cdots (x - (p - 1)). \end{equation*}
25

Let $F$ be a field and $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ be in $F[x]\text{.}$ Define $f'(x) = a_1 + 2 a_2 x + \cdots + n a_n x^{n - 1}$ to be the of $f(x)\text{.}$

  1. Prove that

    \begin{equation*} (f + g)'(x) = f'(x) + g'(x). \end{equation*}

    Conclude that we can define a homomorphism of abelian groups $D : F[x] \rightarrow F[x]$ by $D(f(x)) = f'(x)\text{.}$

  2. Calculate the kernel of $D$ if $\chr F = 0\text{.}$

  3. Calculate the kernel of $D$ if $\chr F = p\text{.}$

  4. Prove that

    \begin{equation*} (fg)'(x) = f'(x)g(x) + f(x) g'(x). \end{equation*}
  5. Suppose that we can factor a polynomial $f(x) \in F[x]$ into linear factors, say

    \begin{equation*} f(x) = a(x - a_1) (x - a_2) \cdots ( x - a_n). \end{equation*}

    Prove that $f(x)$ has no repeated factors if and only if $f(x)$ and $f'(x)$ are relatively prime.

26

Let $F$ be a field. Show that $F[x]$ is never a field.

Hint

Find a nontrivial proper ideal in $F[x]\text{.}$

27

Let $R$ be an integral domain. Prove that $R[x_1, \ldots, x_n]$ is an integral domain.

28

Let $R$ be a commutative ring with identity. Show that $R[x]$ has a subring $R'$ isomorphic to $R\text{.}$

29

Let $p(x)$ and $q(x)$ be polynomials in $R[x]\text{,}$ where $R$ is a commutative ring with identity. Prove that $\deg( p(x) + q(x) ) \leq \max( \deg p(x), \deg q(x) )\text{.}$