1
Which of the following sets are rings with respect to the usual operations of addition and multiplication? If the set is a ring, is it also a field?
$7 {\mathbb Z}$
${\mathbb Z}_{18}$
${\mathbb Q} ( \sqrt{2}\, ) = \{a + b \sqrt{2} : a, b \in {\mathbb Q}\}$
${\mathbb Q} ( \sqrt{2}, \sqrt{3}\, ) = \{a + b \sqrt{2} + c \sqrt{3} + d \sqrt{6} : a, b, c, d \in {\mathbb Q}\}$
${\mathbb Z}[\sqrt{3}\, ] = \{ a + b \sqrt{3} : a, b \in {\mathbb Z} \}$
$R = \{a + b \sqrt[3]{3} : a, b \in {\mathbb Q} \}$
${\mathbb Z}[ i ] = \{ a + b i : a, b \in {\mathbb Z} \text{ and } i^2 = -1 \}$
${\mathbb Q}( \sqrt[3]{3}\, ) = \{ a + b \sqrt[3]{3} + c \sqrt[3]{9} : a, b, c \in {\mathbb Q} \}$
(a) $7 {\mathbb Z}$ is a ring but not a field; (c) ${\mathbb Q}(\sqrt{2}\, )$ is a field; (f) $R$ is not a ring.