Proof
(1) $\Rightarrow$ (2). Let $E$ be a finite algebraic extension of $F\text{.}$ Then $E$ is a finite dimensional vector space over $F$ and there exists a basis consisting of elements $\alpha_1, \ldots, \alpha_n$ in $E$ such that $E = F(\alpha_1, \ldots, \alpha_n)\text{.}$ Each $\alpha_i$ is algebraic over $F$ by TheoremĀ 21.15.
(2) $\Rightarrow$ (3). Suppose that $E = F(\alpha_1, \ldots, \alpha_n)\text{,}$ where every $\alpha_i$ is algebraic over $F\text{.}$ Then
\begin{equation*}
E = F(\alpha_1, \ldots, \alpha_n) \supset F(\alpha_1, \ldots, \alpha_{n - 1} ) \supset \cdots \supset F( \alpha_1 ) \supset F,
\end{equation*}
where each field $F(\alpha_1, \ldots, \alpha_i)$ is algebraic over $F(\alpha_1, \ldots, \alpha_{i - 1})\text{.}$
(3) $\Rightarrow$ (1). Let
\begin{equation*}
E = F(\alpha_1, \ldots, \alpha_n) \supset F(\alpha_1, \ldots, \alpha_{n - 1} ) \supset \cdots \supset F( \alpha_1 ) \supset F,
\end{equation*}
where each field $F(\alpha_1, \ldots, \alpha_i)$ is algebraic over $F(\alpha_1, \ldots, \alpha_{i - 1})\text{.}$ Since
\begin{equation*}
F(\alpha_1, \ldots, \alpha_i) = F(\alpha_1, \ldots, \alpha_{i - 1} )(\alpha_i)
\end{equation*}
is simple extension and $\alpha_i$ is algebraic over $F(\alpha_1, \ldots, \alpha_{i - 1})\text{,}$ it follows that
\begin{equation*}
[ F(\alpha_1, \ldots, \alpha_i) : F(\alpha_1, \ldots, \alpha_{i - 1} )]
\end{equation*}
is finite for each $i\text{.}$ Therefore, $[E : F]$ is finite.