Proof
We have already shown (1) and (2) to be equivalent.
$(2) \Rightarrow (3)\text{.}$
\begin{align*}
\langle A{\mathbf x}, A{\mathbf y} \rangle & = (A {\mathbf x})^{\rm t} A {\mathbf y}\\
& = {\mathbf x}^{\rm t} A^{\rm t} A {\mathbf y}\\
& = {\mathbf x}^{\rm t} {\mathbf y}\\
& = \langle {\mathbf x}, {\mathbf y} \rangle.
\end{align*}
$(3) \Rightarrow (2)\text{.}$ Since
\begin{align*}
\langle {\mathbf x}, {\mathbf x} \rangle & = \langle A{\mathbf x}, A{\mathbf x} \rangle\\
& = {\mathbf x}^{\rm t} A^{\rm t} A {\mathbf x}\\
& = \langle {\mathbf x}, A^{\rm t} A{\mathbf x} \rangle,
\end{align*}
we know that $\langle {\mathbf x}, (A^{\rm t} A - I){\mathbf x} \rangle = 0$ for all ${\mathbf x}\text{.}$ Therefore, $A^{\rm t} A -I = 0$ or $A^{-1} = A^{\rm t}\text{.}$
$(3) \Rightarrow (4)\text{.}$ If $A$ is inner product-preserving, then $A$ is distance-preserving, since
\begin{align*}
\| A{\mathbf x} - A{\mathbf y} \|^2 & = \| A({\mathbf x} - {\mathbf y}) \|^2\\
& = \langle A({\mathbf x} - {\mathbf y}), A({\mathbf x} - {\mathbf y}) \rangle\\
& = \langle {\mathbf x} - {\mathbf y}, {\mathbf x} - {\mathbf y} \rangle\\
& = \| {\mathbf x} - {\mathbf y} \|^2.
\end{align*}
$(4) \Rightarrow (5)\text{.}$ If $A$ is distance-preserving, then $A$ is length-preserving. Letting ${\mathbf y} = 0\text{,}$ we have
\begin{equation*}
\| A{\mathbf x}\| = \| A{\mathbf x}- A{\mathbf y} \| = \| {\mathbf x}- {\mathbf y} \| = \| {\mathbf x} \|.
\end{equation*}
$(5) \Rightarrow (3)\text{.}$ We use the following identity to show that length-preserving implies inner product-preserving:
\begin{equation*}
\langle {\mathbf x}, {\mathbf y} \rangle = \frac{1}{2} \left[ \|{\mathbf x} +{\mathbf y}\|^2 - \|{\mathbf x}\|^2 - \|{\mathbf y}\|^2 \right].
\end{equation*}
Observe that
\begin{align*}
\langle A {\mathbf x}, A {\mathbf y} \rangle & = \frac{1}{2} \left[ \|A {\mathbf x} + A {\mathbf y} \|^2 - \|A {\mathbf x} \|^2 - \|A {\mathbf y} \|^2 \right]\\
& = \frac{1}{2} \left[ \|A ( {\mathbf x} + {\mathbf y} ) \|^2 - \|A {\mathbf x} \|^2 - \|A {\mathbf y} \|^2 \right]\\
& = \frac{1}{2} \left[ \|{\mathbf x} + {\mathbf y}\|^2 - \|{\mathbf x}\|^2 - \|{\mathbf y}\|^2 \right]\\
& = \langle {\mathbf x}, {\mathbf y} \rangle.
\end{align*}