Example20.6
Let $W$ be the subspace of ${\mathbb R}^3$ defined by $W = \{ (x_1, 2 x_1 + x_2, x_1 - x_2) : x_1, x_2 \in {\mathbb R} \}\text{.}$ We claim that $W$ is a subspace of ${\mathbb R}^3\text{.}$ Since
$W$ is closed under scalar multiplication. To show that $W$ is closed under vector addition, let $u = (x_1, 2 x_1 + x_2, x_1 - x_2)$ and $v = (y_1, 2 y_1 + y_2, y_1 - y_2)$ be vectors in $W\text{.}$ Then