Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
Project: saurabh.sagews
Path: 2023-12-01-file-1.sagews
Views: 18Image: ubuntu2204
(4, 0, 7)
(9, -2, 17)
3D rendering not yet implemented
(sqrt(14), 6, 3)
((3, 2, 4), (1, -2, 3))
11
(14, -5, -8)
0
0
3D rendering not yet implemented
(0, 0)
(33/29, 22/29, 44/29)
11
True
[ 1 3 7 -2]
[ 2 -7 1 4]
[ 9 10 16 2]
\left(\begin{array}{rrrr}
1 & 3 & 7 & -2 \\
2 & -7 & 1 & 4 \\
9 & 10 & 16 & 2
\end{array}\right)
[ 63 -20 147]
[-20 70 -28]
[147 -28 441]
371028
[ 307/3786 8/631 -695/26502]
[ 8/631 21/1262 -2/631]
[ -695/26502 -2/631 2005/185514]
[ -1717/13251 11/631 6002/92757]
[ -2855/26502 -139/1262 9571/185514]
[ 4259/26502 69/1262 -2563/185514]
[ -724/4417 22/631 1898/30919]
((3, 2, 4), (1, -2, 3), (14, -5, -8))
[ 3 1 14]
[ 2 -2 -5]
[ 4 3 -8]
[ 0 0 7 1]
[ 8 0 -5 1]
[-3 -3 -2 -8]
[ 5 -6 -9 -9]
[ 0 0 42 6]
[ 48 0 -30 6]
[-18 -18 -12 -48]
[ 30 -36 -54 -54]
[ 10 7 8 -2]
[ -4 -8 3 -3]
[ 6 -4 -10 1]
[ -7 1 1 -5]
3
(10, 7, 8, -2)
[ 7]
[-8]
[-4]
[ 1]
[ 10 7 8 -2]
[ -4 -8 3 -3]
[ 6 -4 -10 1]
[ -7 1 1 -5]
[ 10 7 8 -2]
[ -7 1 1 -5]
[ 6 -4 -10 1]
[ -4 -8 3 -3]
[ 10 7 8 -2]
[ -7 1 1 -5]
[ 60 -40 -100 10]
[ -4 -8 3 -3]
[ 10 7 8 -2]
[-307 201 501 -55]
[ 60 -40 -100 10]
[ -4 -8 3 -3]
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
The original matrix is
We add -2 times row 1 to row 2
We add -4/3 times row 1 to row 3
We add -11/9 times row 2 to row 3
We add -9/49 times row 3 to the row 2
We add -9/49 times row 3 to the row 1
We add 2/3 times row 2 to the row 1
We divide row 1 by 3
We divide row 2 by 3
We divide row 3 by 49/9
(x, y, z)
[[x == -14/19*r1 + 86/19, y == -3/19*r1 + 13/19, z == r1]]
(815/303, -365/303, 350/303)
[ 1 0 0| 815/303]
[ 0 1 0|-365/303]
[ 0 0 1| 350/303]
Vector space of dimension 4 over Rational Field
True
(1/6, 0, 0, 4/43)
Vector space of degree 4 and dimension 3 over Rational Field
Basis matrix:
[ 1 0 0 0]
[ 0 1 0 -2]
[ 0 0 1 -1]
[
(0, 1, 0, -1/2)
]
[(1, 1/3, -1, 1/10), (0, -14/23, 0, -4/3), (1/5, 0, 2, -1), (0, 1/4, 1/8, 3)]
[
]
[ 1 2 13 4]
[ -5 -15 -20 -30]
[ 3 13 16 26]
[ 7 17 24 34]
[1 0 0 0]
[0 1 0 2]
[0 0 1 0]
[0 0 0 0]
True
Vector space of degree 4 and dimension 4 over Rational Field
User basis matrix:
[ 1 2 3 4]
[ 2 1 -2 0]
[11 12 13 4]
[ 7 21 31 41]
[651/115, 10/23, -21/115, -5/23]
(3, 5, 7, 13)
True
[ 1 0 0 0 651/115]
[ 0 1 0 0 10/23]
[ 0 0 1 0 -21/115]
[ 0 0 0 1 -5/23]
[ 1 -1]
[-2 1]
[ 0 0]
[ 2 -2]
[ 1 0 0 -1 0 -1/2]
[ 0 1 0 -1 0 -1]
[ 0 0 1 0 0 -1/2]
[ 0 0 0 0 1 0]
(0, 1, 2, 4)
Vector space of degree 4 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 4/15 -4/3]
[ 0 1 -1307/30 -1229/12]
Vector space of degree 4 and dimension 4 over Rational Field
Basis matrix:
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
True