SAGE Tutorial 2.7 Polynomials - Examples
Univariate Polynomial Ring in t over Rational Field
Univariate Polynomial Ring in t over Rational Field
True
True
t^2 + 3*t + 2
True
True
Complex Field with 53 bits of precision
1.00000000000000*I
I= I , I^2= -1 , Checking Euler's Trademark Formula exp(i pi)+1=0 : 0
Finite Field of size 3 Generator: 1
1
2^3 in Z vs. 2^3 in F3: 8 2
t^6 + t^5 + t^4 + t^3 + t^2 + t + 1
7*t^8 + 7*t^7 + 14*t^6 + 14*t^5 + 14*t^4 + 14*t^3 + 14*t^2 + 7*t + 7
(7) * (t^2 + 1) * (t^6 + t^5 + t^4 + t^3 + t^2 + t + 1)
(x^3 + 1)/(x^2 - 17)
Fraction Field of Univariate Polynomial Ring in x over Rational Field
Laurent Series Ring in x over Rational Field
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + O(x^10)
False
False
x^2 - 17
Power Series Ring in T over Finite Field of size 7
T^3 + 2*T^4 + 2*T^5 + O(T^6)
T^-1 + 4 + T + O(T^2)
Laurent Series Ring in T over Finite Field of size 7
Multivariate Polynomial Ring in z0, z1, z2 over Finite Field of size 2
Multivariate Polynomial Ring in z0, z1, z2 over Finite Field of size 5
Multivariate Polynomial Ring in z0, z1, z2 over Finite Field of size 5
Multivariate Polynomial Ring in x, y, z over Finite Field of size 5
(z0, z1, z2)
z0^2 + 2*z0*z1 + z1^2 + 2*z0*z2 + 2*z1*z2 + z2^2
(x, y)
Multivariate Polynomial Ring in x, y over Rational Field
x^6 + 4*x^4*y^2 + 4*x^2*y^4
f= x^6 + 4*x^4*y^2 + 4*x^2*y^4 g= x^2*y^2 gcd= x^2
Ideal (x^6 + 4*x^4*y^2 + 4*x^2*y^4, x^2*y^2) of Multivariate Polynomial Ring in x, y over Rational Field
[x^6, x^2*y^2]
False
<class 'sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic'>
Multivariate Polynomial Ring in x, y over Rational Field
x^2*y^2
Error in lines 1-1
Traceback (most recent call last):
File "/cocalc/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 1188, in execute
flags=compile_flags) in namespace, locals
File "", line 1, in <module>
File "/ext/sage/sage-8.4_1804/local/lib/python2.7/site-packages/sage/structure/sequence.py", line 504, in __setitem__
self._require_mutable()
File "/ext/sage/sage-8.4_1804/local/lib/python2.7/site-packages/sage/structure/sequence.py", line 741, in _require_mutable
raise ValueError("object is immutable; please change a copy instead.")
ValueError: object is immutable; please change a copy instead.
[Ideal (x^2) of Multivariate Polynomial Ring in x, y over Rational Field, Ideal (y^2, x^6) of Multivariate Polynomial Ring in x, y over Rational Field]
[Ideal (x) of Multivariate Polynomial Ring in x, y over Rational Field, Ideal (y, x) of Multivariate Polynomial Ring in x, y over Rational Field]