Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Number Fields

52 views
# Examples of Number Fields # # Quadratic Extensions L=CyclotomicField(3); L z3=L.gen(); z3 z3^2+z3+1
Cyclotomic Field of order 3 and degree 2 zeta3 0
L1.<a> = NumberField(x^2 + x + 1); L1 a
Number Field in a with defining polynomial x^2 + x + 1 a
a^2+a+1 z3^2+z3+1 if z3==a: print "z3=a both are zeta3" else: print "different implementations ..."
0 0 different implementations ...
L.absolute_discriminant() L1.absolute_discriminant()
-3 -3
a.trace() a.norm()
-1 1
z3.trace() z3.norm()
-1 1
# ****************************************************************************************************** # Define the linear automorphism Ma(x)=ax in L # First some Linear Algebra basics with SAGE # Constructing a linear transformation A = matrix(QQ, [[-1, 2, 3], [4, 2, 0]]) phi = linear_transformation(A) phi
Vector space morphism represented by the matrix: [-1 2 3] [ 4 2 0] Domain: Vector space of dimension 2 over Rational Field Codomain: Vector space of dimension 3 over Rational Field
phi([2, -3]) # transformations act from right on vectors (at left).
(-14, -2, 6)
# Different fields as coefficients F = Integers(13); F D = F^3; D C = F^2; C x, y, z = var('x y z') f(x, y, z) = [2*x + 3*y + 5*z, x + z]; f rho = linear_transformation(D, C, f); rho
Ring of integers modulo 13 Vector space of dimension 3 over Ring of integers modulo 13 Vector space of dimension 2 over Ring of integers modulo 13 (x, y, z) |--> (2*x + 3*y + 5*z, x + z) Vector space morphism represented by the matrix: [2 1] [3 0] [5 1] Domain: Vector space of dimension 3 over Ring of integers modulo 13 Codomain: Vector space of dimension 2 over Ring of integers modulo 13
f(1, 2, 3) rho([1, 2, 3])
(23, 4) (10, 4)
# Define M2(x)=2x over F7
# Check the properties of the Discriminant #